
Masterscene

INTRODUCTION:
I am developing games and applications in unity for

about 2 Years now and I must admit that Unity is the

best Game Engine available except when it comes to

one thing: The scene system. The main Problem is

that I want to have objects like UI which contain

cheat options or player information in every scene.

The first option is to make Singletons for every class

but it gets messy very fast. After a time I came up

with the solution by implementing a Master Scene

and it solved all my problems.

WHAT DOES IT:
The Masterscene simply is a scene above all other scenes. This means,

that this scene is available forever, no matter what`s happening. It will

be loaded when the game starts and unloaded when you close the

application. The result is that every object located in the masterscene

is active the whole game (like a singleton). Objects which should be in

the masterscene are all kind of persistent stuff like save systems,

projectile systems or score counters. An additional feature is the easy

implementation of transition effects and loading bars which are also

implemented in the masterscene. This Asset contains 3 transition

effects which are described below as a sample.

HOW TO USE:

Setup normal scenes and Masterscene_Caller:
In Order to use this system, every normal scene must contain one

MasterScene_Calle r object. So drag one MasterScene_Caller prefab into

the scene if it doesn’t contain one.

This object is responsible for adding the MasterScene if it is the first scene

loaded. It also contains optional Scene Settings which may have more

options in the future. Additionally it contains 2 Unity events which can be

used by the event system which are:

 On Finished Loading: Is called, when the MasterScene Manager has loaded a new Level.

 On Start Unloading; Is called before the scene gets unloaded.

Note: If an attached function throws an exception, the error message is generated which tells

you that the bad function is assigned to one of those events. It tells you which event caused the

error and in which scene:

"One or more functions assigned to the Event: OnStartLoading/ OnFinishedLoading

(MasterScene_Caller) has thrown an exception in the [CURRENTSCENE]"

The Scene Settings currently only contains the Option to suppress the UI in the master scene and is a

way to add your custom options. This option is there as it is needed to disable persistent User

Interfaces in some scenes like Splash Screens or Title Screen.

The most important functions of the MasterScene_Caller are Reload() and ChangeScene(string).

Reload simply reloads the current scene. It is useful in cases where you just want to reload the scene

like when the player dies etc.

The ChangeScene(string) function does what its name says and It invokes a scene change where the

string is the Name of the scene. When changing scene, a verification check is done to prove that the

scene change is authentic.

The ChangeSceneNoLoadingEffect(string) function does what its name says and It invokes a scene

change but without executing Loading Effects. This is useful when the loading times are so short that

you don’t have to display loading gauges.

Possible Validation fails are:

 SceneList does not exist: If you managed to delete or rename the SceneList file

somehow, create one by going to your Project tab and select Create > Custom > MasterScene

> SceneList. Make sure it is in a resource folder.

 Scene is not in the SceneList: Is your string Correct?

 Scene is in List but does not exist: Scene got removed or renamed?

 Another Scene is already loading: Safety measure for people who bash buttons -,- wait

until the loading is finished

Scene List:
The most important object for this system is the SceneList

file which is located in the Resource folder. Please do not

DELETE IT or RENAME IT and it has to be in a Resource

folder! I even point it out as some testers really removed

this file. If you still removed it somehow, you can create a

new one by selecting:

Create – Custom – MasterScene – SceneList in the Project

Tab where you create Materials etc.

If you have a new scene or renamed a scene, the

SceneList has to be updated. This is done manually by

pressing the “Update List” Button or automatically when

you hit the play button as the MasterScene_Manager will

update the SceneList when you start your game in the

Unity Editor. You actually only have to check it when you want to set the first scene which is usually a

splash screen or title screen. It will also add the scenes in the build settings so you don’t have to do it

manually when building the game (I would always forget it and end up with missing scenes in the

build).

Every entry can be disabled, enabled or Set as First or Master Scene by clicking on the buttons.

When updating, the system will scan the complete Asset Database for scene files and adds them into

the list. All scenes get an entry in the Active Scenes section unless they are marked as disabled. For

example, there are 3 Scenes which should be hidden in the image right.

There is an entry for the Master Scene. This tells the name of the MasterScene. Either keep it and use

the master scene from the sample or create your own.

Another entry is the First Scene. This describes which scene should be loaded at first when building

the game. This scene will be the first entry in the scene list located in the build settings.

Now there is also the option to turn off the auto updating when hitting the play button as it slows

down starting the game in editor when the project is huge.

Master Scene Management:
This object has to be located in the Master Scene. It

manages all scene changings and implements transition

effects. It is implemented as cheap singleton _Instance

to just be able to access it from other scenes. You want

to access it when implementing stuff which should

change scenes. When you want to implement your own

stuff like loading bars and transition effects, several

events with their according UnityEvents are exposed

which are:

 _onFinishedLoadingLevel: Is called when a loading process is finished and the scene is loaded.

It is called after everything is loaded to make sure every object is really called. Is Called

after Start() so everything is there

o According UnityEvent: OnStartChangingScene

 _onBeginUnloadingLevel: Is called before the scene transition starts. It is called before

OnDestroy(). Use this to important scene related stuff like saving. Everything is still alive

when this is called

o According UnityEvent: OnFinishChangingScene

Note: If an attached function throws an exception, the error message is generated which tells you

that the bad function is assigned to one of those events:

 "One or more functions assigned to the Event: OnStartChangingScene/ OnFinishChangingScene
(MasterScene_Manager) has thrown an exception in the Masterscene!"

Events for Transitioning:

 _onStartTransistioning: Is called when Transistioning sets in. Use this to enable your

transitioneffect GameObject

o According UnityEvent: OnStartTransition

 _onTransistioning: Is called while changing scene. Has a value which is between 0 and 1. 0

means no loading is going or it is finished. 1 means scene is loading.

o According UnityEvent: OnTransition

 _onFinishTransistioning: Is called when Transistioning sets is finished. Use this to disable

your transitioneffect GameObject

o According UnityEvent: OnFinishTransition

Events for Loading Effects/Screens:

 _onStartLoading: Is called when Loading Effect sets in. Use this to enable your

LoadingBar/Screen GameObject

o According UnityEvent: OnStartLoadingScene

 _onLoading: Is called while scene is loading. Has percent between 0 and 1 where 0 means 0%

loaded and 1 means 100% loaded. Is only useful if scenes have long loading times. The sample

scenes are loaded way to fast in order to see the example loading bar in action.

o According UnityEvent: OnLoadingScene

 _onFinishLoading: Is called when Loading Effect sets in. Use this to disable your

LoadingBar/Screen

o According UnityEvent: OnFinishLoadingScene

The Transition Frames describe how fast the transition

effect should be. This is in Frames which means that 60

Frames = 1 Second if Fixed Time step is 60 Frames per

second. It currently contains a Master Ui as parameter

which is for User Interface which must be persistent

through all scenes. The MasterScene_Caller will

deactivate this game object when the flag

SupressMasterUI is true.

The important functions are ChangeScene(String) and Reload which do the same thing described in

the section Setup normal scenes and MasterScene_caller. It also has the

ChangeSceneNoLoadingEffect(String) version.

Notice: When you load a scene, the lighting option of the loaded scene is used unless you set the Flag

“NoLightingOptions”. If flagged, the Lighting Options of the Master Scene will be used

If you set the “NoLoadingEffect” Flag, no loading effect will occur even if changescene is called.

The function AddScene(string) and SubtractScenes(string) should only be used by experienced uses.

It simply adds or removes a scene. Use these functions if your game has to load multiple scenes.

However this is highly experimental as I never needed such loading system. These Functions don’t do

scene transitions and event calling. It only verify that the scene you want to load exists.

The last function is a simple SimulateTransistioning(). It simply does the effect without changing any

scene.

SELECTION GENERATOR:
Using strings as input parameter always is a bad thing as simple

typos are enough to create errors and humans tend to make

mistakes.

Therefore is the possibility to create Scene selectors. These are

files which only contain the name of a scene and can be used as

input parameter instead of strings. These files are created in the

“/Assets/MasterScene/Resources” folder and can be created by

hitting the “Create Selections” button in the scenelist.

To use these objects, simply call the

_Changescene(MasterSceneSelector) and select your scene in the

asset database like in this picture. You can see a scene with a very

ugly name. Imagine the struggle when you have type this as

string.

Keep in mind that these are not changed when you rename or

delete a scene file. They are just like strings and if the scene does

not exist, you get the standard message that the scene does not

exist. Also when you remove a Selection from the folder, the

input parameter of your Portal/Button is null. This throws this

exception:

ArgumentException:Failed to convert Parameters ………

This exception is thrown somewhere in the UnityEvent system so I cannot change it to an useful error

message like “You want to change scene with selectors but you don’t have one assigned”

TIPPS FOR EXTENDING:

It is easy to extend this system by adding your custom transition effects and loading screen. To do

this, use the Events provided by the MasterScene_Manager. If you have to access objects which are

in the master scene, make one game object in the master scene and add a simple script to it which

has a static reference to it and your stuff assigned as member variable to it.

When you want to create your own transition effects, you may investigate how stencil system works

in unity. This sample contains 2 Materials which represent this to create this rotating square

transition.

Setup your own master scene:
The easiest way to setup your own master scene is just to copy the existing one and update the

scenelist It’s not worth your time to create a new scene, throw in MasterScene_Manager prefab,

setup UI stuff when you just can copy the sample master Scene it.

POSSIBLE ERRORS/DANGERS:

My scene does not load:
 Check if your scene has a MasterScene_Caller if not, add it to the Scene by simply dragging

the prefab into the scene.

 Check if the MasterScene_Management is in the master scene.

 Check if SceneList exists. If not create it (Create > Custom > MasterScene > SceneList in

project tab) and move it in a resource folder.

 Check if the Scene you want to load exists.

UI does not work:
 This happens if you make a canvas where Unity automatically creates an EventSystem object.

Delete it if it already exists in the master scene.

 Make sure there is no Label in the Master Scene which blocks ray casts over the whole

screen.

 Loading Bar not visible: Make sure it does not get obstructed by transition effects.

Unity Freezes (Substance):
 Before 2018.1 Substance files (.sbsar) were supported by unity. Unity sometimes froze

completely when a scene was loaded asynchrony which contained substance materials.

Support for substance got removed in 2018.1 and must be obtained from the asset store.

The solution is to convert generated textures to normal textures which can then be used.

Multiple Audio Listeners:
 A camera in Unity has automatically an Audio Listener. Make sure there are no multiple

Audio Listeners. Either delete the Listener in the master scene or remove it from cameras in

your scenes.

WORLD MANAGER:
This system shows how easy it is to extend the current system

with an own plugin which allows communication between

scenes. In order to set it up, create the

MasterScene_Selections by using the Selection Generator

described in previous page. Then simply throw in the

WorldManager prefab into the master scene. The world

manager has no settings and its inspector will only show

written entries during play mode. Keep in mind that this

system currently doesn’t stay persistent and world

information is lost when you exit the play mode. Save Systems

may be implemented in further updates as it can also take

advantage of the master scene system but there already exists

a numerous amount of save systems in the asset store

The database has a category for each scene you have. In order

to write information into the database, throw in one of those three sample prefabs into your current

scene. Every writer needs a MasterScene_Selector as target world which is required or it will not

write anything. In order to write something into the database, simply call “_WriteKey(string key)”

from another script or by using the Event System like in the right image. Keep in mind that writer like

the IntWriter has to set the Value which should be written into the database.

Entries can also be removed from the database by simply calling _RemoveWorldInformation(string

key) which can also be called by using EventSystems.

Writer Classes
All writer inherit from the WorldManager_BaseWriter class. The base class simply implements the

_RemoveWorldInformation, a _Write(key, Value) function and _UpdateWorld function. Every derived

class should use the _Write function in order to write Information into the database. Following writer

are currently implemented:

 KeyWriter:

This class simply implements a _Write(string Key) function which simply writes the key into the

database where the Key is also the Value. Useful

 StringWriter

Similar to KeyWriter but has a Value property with an added function

_SetValueToWrite(string Value). The _Write(string Key) method writes the Value with

Key into the database.

 IntWriter

This writer writes an Interger into the database and is similar as the StringWriter.

Extending:

Every .net class and Serializable class can be written into the database. However keep in mind that

such entries also require a reader which can work with those informations.

Readers:
Reader will read the information which is stored in the database. Whenever a scene is fully loaded,

the WorldManager fires the „_onApplyWorldInformation event which also includes the Information

about the current loaded world. The sample readers currently implemented are following entries:

 Activator:

This basic reader simply checks if the key exists and enables or disables assigned

game objects. If the “Inverted” flag is set, the opposite is true and objects are

enabled if the key doesn’t exist

 Eventcaller:

This reader behaves similar to the Activator and just checks if the key exists or not. It has 3

UnityEvents which are “OnExisting”,” OnNotExisting” and “DynamicState(bool)” and are fired

according to result. If “removekeyafterwards“ is set, the key is removed if exists.

 IntReader:

As any object can be written into the database, different reader are required to use

them. This reader reads the value of an entry and fires an Existing_Int and

Existing_float if the data type is really “int” and nothing else.

Extending:

Any class can implement the _onApplyWorldInformation(Dictionary<string, object>

Information) event.

It is important that your entry could consist of

any class. Therefore it is recommended to use a

Try-Catch block in order to prevent

InvalidCastException errors like it is implemented

in IntReader. It can happen that an entry has the

wrong data type when it first get written by an

IntWriter and then an StringWriter overwrites the

entry with an “string” data type if both writer

have set the same key as parameter.

The written entries are visible in the inspector during play mode. Writer only show

entries of their targeted world and the WorldManager itself shows all existing

entries.

LAST NOTES:
If you have any questions, suggestions, bug reporting don’t hesitate to contact me. If you are going to

sell a game which uses this asset, inform me because I may buy your game and play it

Contact Information:

E-Mail: mhartl.mmt-b2013@fh-salzburg.ac.at

Homepage: http://lostinpixels.org/

mailto:mhartl.mmt-b2013@fh-salzburg.ac.at

