
C E L L G E N E R A T O R

INTRODUCTION:

The cell generator is a system which uses cellular automata to
create objects procedurally according to cells which are affected
by defined rules. The most famous cellular automata system is
Convay’s Game of Life which uses 2 simple rules for cell
resurrection and death. These rules are enough to create an
unpredictable outcome. Also the cell generator has properties of
a voxel engine but without memory saving data structures
because this generator is optimized for fast cell updating.
However it can also be used for 2D voxel maps or 3D maps with
very low resolution so it does not eat up your memory. This
generator also contains a system where custom rules like flood
fill or element cycles (water > fire > air > earth > water) can be defined. Also the whole generator
is burst optimized so it is recommended to install the burst package for performance boost.

HOW TO USE:

For fast testing, just drag in one of the provided CellGenerator
prefabs in your scene. All CellGenerator prefabs have
visualizations attached so the initial system becomes visible
immediately.

The prefab contains the CellGenerator, CellSaveSystem, a
CellModifier component which allows you to modify the block by
holding CTRL + Left/Right/Middle mouse click. The main settings
for the CellGenerator are the Boundary which defines length,
width and height and the Root Size which defines the volumetric
size of each cell. Usually the Y value is 1 or 2 since 2D cell fields
are recommended. If the Y value is lager, the CellGenerator
basically turns into a 3D voxel engine with cubic memory
requirement increase.

The CellSaveSystem provides options for saving the volumetric
dataset and automatically saves the cell data when saving the
scene itself. The standard setting “Scene” is the most convenient
method as it simply stores the data into the “.unity” scene file and
is fine for 2D cell maps with smaller resolution. However the
Unity serialization slows down the Unity Inspector when the size
of the cell data becomes too large especially if it goes into the third dimension due to cubic
memory increase. For such cases, it is better to save it as ScriptableObject in order to keep the
Unity scene file small.

When importing this asset the first time in a fresh Unity project,
the Burst and Collection package probably is not installed.
Fortunately it is now easy to install the latest version by clicking
on both buttons which are visible at the CellGenerator
component. Burst will boost the performance and Collections
updates the internal data structure which also boosts
performance.

The visualization itself is separated from the main
CellGenerator GameObject and is a separate hull generator
attached as child to the CellGenerator. Each CellGenerator can
have as many hull generators attached as desired. Most hull
generators listen to exactly one cell value which can be between
0 and 255. The most commonly used hull generators are
MarchingCubes and Crystallic but more may be included in
future updates. All generated meshes can have collision
detection for GameObject interaction. The cell data of the 2 right
images is identically but different hull generators are used for
the visual representation.

When the CellGenerator inside the editor is selected, you can
modify the block by holding CTRL + Left/Right/Middle click
whenever a CellModifier component is attached (which is
usually the case unless removed). Saving the scene will
automatically save modified CellGenerators. On scene
initialization, the Cell data is regenerated by the CellSaveSystem
or if disabled, can be loaded dynamically later.

In order to simulate Cellular Automata, a game object with a
various rules is attached to the generator. The rules are fetched
on initialization and converted into a native format. This allows
the creation of Cellular Automata rule without touch burst
compiled code.

Since the CellGenerator is supposed for 2D cell fields, a variety
of modifying tools are included which can be used as brush by
the CellModifier component. It is also possible to use .rle cell
pattern files which can be downloaded on the official game of
life wiki page:

https://www.conwaylife.com/wiki/Main_Page

https://www.conwaylife.com/wiki/Main_Page

MAIN COMPONENTS:

The main components are the CellGenerator itself, a variety of CellRules to define rules, a variety
of hull generators for visualization and supportive components such as the CellModifier and
CellSaveSystem. Each CellGenerator could exist completely alone without any supportive
components but then have limited functionality as it only provides the data management.

CELL GENERATOR

The CellGenerator is the main component of the cellular
automation system and provides the internal data
management and applies provided rules whenever an
iteration cycle is executed. The CellGenerator contains
parameters about the boundary and the hull generation
process:

Boundary: Describes the size of the cell field and only
allows positive values. In most systems a 2D field is
desired and it is recommended to keep the Y value low
since the Y axis is defined as “Height” in Unity3D. Therefore brushes and tools expect the Y value
to be the height. The Cell Count label shows the amount of cells the field will contain (X * Y * Z).
The safety limit is set to 5000000 cells. Higher Y values would turn the cell generator into a low
resolution voxel engine.

Hull_Subdivision X, Y, Z: Defines the subdivision of hull generators. Higher subdivision counts
are recommended for large cell maps in order to reduce computation costs for the hull
generators. Only those regions where cells have changed are updated.

Cell Size: Determines the physical size of each cell. A blue
boundary box indicates the total space a generator will
occupy.

State: Valid if initialize and no errors, Invalid if not
initialized or errors are detected.

Initialize: Initializes the cell field.
CleanUp: Clears the cell field.
Update: Execute one cell iteration cycle.

The CellGenerator also include an export functionality
which automatically detects attached hull generators.
When exporting, all subdivided regions of a hull
generator are merged together to generate one asset
mesh file which is then stored in your asset database.

TECHNICAL PART:

FUNCTIONS:

Initialize(): Initializes the cell field. Also has a dynamic version which is used by the save system
to prevent performance drop during initialization.

SetCells(): Provides a variety of options to modify cells directly.

WorldToCellPos/LocalToCellPos/CellToLocal/CellToWorldPos: Simple coordinate
conversion functions.

SetVisualisationDirty(): Marks the generator as dirty and launches visualization updates.

Cleanup(): Destroys the Cell Field

PROPERTIES:

IsInitialized: Property which is true, if the is generated.

IsLoading: Returns true if loading processes by the CellSaveSystem are going on.

CELL SAVE SYSTEM:

The CellSaveSystem is the main component for
persistence and should always be together with the
CellGenerator. The only exception occurs if the content is
completely procedural and persistence is never intended.
This component is also required since modifications
inside the editor should be saved. If the CellGenerator was
modified in during edit mode, it will be marked dirty and
saves the data automatically when saving the scene.
(pressing ctrl+s)

There are 3 different saving options where the first one is “Scene” which saves the cell data
directly into the scene. This saving method is fast and convenient since there are no extra files to
manage. However this mode will slow down the inspector when high resolution data is used.
Since the memory demand of Cell Generators is low, “Scene” saving method is recommended.

The second mode is “Scriptable Object” which stores the data as
scriptable object in the asset database. This option causes less
overhead for Unity and keeps the scene file small. Also causes no
serialization overhead which is useful for high resolution maps.
Also this method is better for version control systems such as git
since there are more small files than one big scene file. Also merge
conflicts are easier to avoid since data can be merged while Unity
scene files still have merge issues in git. Also data from the “Scene”
option is removed when saving with this mode since having data in
the scene file is obsolete when it already exists as scriptable object.
Additionally, this saving option comes with a management system and has following settings:

 Duplicate Map on Clone: If true, duplicates the data if you duplicate the generator
inside the editor. It clones the original data and automatically assigns it to the cloned
object. The naming is “CellMap” + the instance id of the cloned GameObject. The location
of the cloned map is in the same folder as the original map.

 Save in scene sub folder: If true, a new cell map is generated and placed into a
subfolder where the Unity scene is located during saving if no map is assigned. The
subfolder is created automatically if it doesn’t exist yet. If false, newly generated voxel
maps are placed into the assets folder.

 Remove cell map on delete: If true, cell map is automatically removed from the asset
database. Note: Removing is not undoable and is permanent!

The third mode is “Persistence Datapath” and just requires a name as identifier (without “.CELL”
ending). It directly stores the cell map as .CELL file into the persistent data path of your target
device. This mode is supposed for persistence during gameplay where the player can save cell
maps. Savings are not handled inside version control systems since these files are probably not
inside the repository and will only exist locally unless shared by external services. This saving
mode is the fastest for saving and loading and is optimized for real time saving/loading.

If Auto Load In Editor is true, cell maps will be loaded automatically when entering edit mode
or loading the scene.

If Load On Start is true, the cell map will be loaded on scene initialization during play mode.

TECHNICAL PART:

FUNCTIONS:

Load(): Loads the cell data and initializes the CellGenerator

SaveBinary(): Saves the cell map as binary file. FileName member variable is used as identifier
for example “CellMap1” without “.VOXEL” as ending.

RemoveBinary(): Removes the binary file at persistent data path. FileName is filename.

DynamicSave(): Real time saving option which does not cause performance spikes. Saves the
cell map as binary file into the persistent data path and should be called without interrupting
gameplay.

DynamicLoad(): Real time method to load any cell map from any source without interrupting
gameplay. CellGenerator can be modified during loading. Especially useful in open world
scenarios where stuff is loaded when the player near a specific region.

CELL MODIFIER

The Cell Modifier is the main tool to modify a cell field inside
the editor. This component should exist on the same
GameObject containing the generator but it can also exist
alone. If alone, the Cell Modifier uses collision detection to find
the target CellGenerators.

In order to paint, have the GameObject with this component
selecting and hold CRTL (STRG) + Left, Right or Middle mouse
click. When holding CRTL, a sphere or brush will indicate the
target paint location.

Also cell pattern algorithms can be used to paint with brushes.
When a cell pattern algorithm is attached, buttons appear on
the inspector where you can select the algorithm you want to
paint with.

Left click on one button selects the algorithm and assigns it to
the applied algorithm variable (manual assignment is possible
but using the buttons is more convenient). Right click on the
selected(yellow) algorithm button will deselect it.

ID_Left, Right, Middle: Value to set when painting.

Radius: Describes the radius of the modification.

Sphere Cast Layer: Layer for automatic generator detection.
Only used when no brush is selected.

Always Modify: List of generators which should always be
affected. Used for painting on more than one generator.

Use Whitelist: When true, only generators inside the whitelist will be affected.

MODIFING ALGORITHMS

Modifing algorithms are components which generate a
defined pattern which can then be used to modify the cell
field either directly by clicking on the apply single/full
button or as painting brush using the Cell Modifier.

Target ID is the main parameter and describes which
value affected cells will obtain when applied. This is
overridden by the Cell Modifier when used as brush.

Start/End Index are used to define the points calculated
and Index shows the current step when single steps are
applied instead of fully complete steps.

The Origin and Z Position describe the starting point
where Z Position actually is the height (Y axis)

These components should be attached to the GameObject
containing the Cell Generator as it fetches the generator
automatically. Else you have to assign it manually.

Also a preview will show where cells would be modified
and is updated whenever parameters are modified.
Common parameters are Radius, Steps, Line Counts,
Circle Counts and are self-explanatory.

However the LifePatterns algorithm works different as it
requires a Cell Data File. This file is an imported .rle file
which contains information about a very specific pattern.
These patterns are supposed to be used with the original
Game of Life rules and can be obtained from the
dedicated wiki page (1500+ files). The included samples
are also from the large package on the wiki page.

https://www.conwaylife.com/wiki/Main_Page

This algorithm ignores the Indexing parameters since no
mathematical model is used to represent the pattern.
Only the most basic parameters like Origin, Z Position
and Step Distance (should be 1 for life patterns) exist.
With Mirror X/Y you can mirror the pattern as it would
still keep their simulation properties.

https://www.conwaylife.com/wiki/Main_Page

HULL GENERATORS

Hull generators are responsible for the visualization of
the cell map and must be attached as children to the
CellGenerator. Each hull generator has its own settings
such as material and any number of hull generators can
be attached to the CellGenerator. The cell generation
systems only use 4 of 256 possible states and are
Dead(0), Life(1), Silver(2) and Gold(3). Therefore the
generators have 4 hull generators assigned where each
hull visualizes one state.

The first parameters which can be found on every hull
generator is the Engine itself which is fetched
automatically when attached to the CellGenerator.

The Editor Only flag can be set if the according hull should
only visualize during edit mode as helper tool.

Any hull generator can also be Locked which prevents the
hull from updating. It will continue immediately if locked is
unchecked.

NoCollision as the name suggest disables mesh collider generation
and usually is set. Uncheck this setting if you really need collision
detection since this has significant performance impact.

Also every generator (future may have exceptions) have an Update
Speed parameter where the region updating speed is adjusted.
This has no impact if no region subdivision is applied (Hull Subdivision X, Y and Z set to 1 on Cell
Generator)

Applied Hideflags are set to “Hidden Don’t Save” by default which hides generated
GameObjects and prevents them from being saved into the Unity scene file. Saving the hulls is
not necessary because it can be reconstructed at any time by the VoxelGenerator which also
applies inside edid mode. Therefore saving generated hulls is obsolete and only would bloat up
the scene file. Other options are “Normal”, “Don’t Save” and Hidden which are all combinations
of Visible and being saved.

The most important setting is the Target ID which defines which Cell Value it should visualize.
The hull generator in the image above wants to visualize “Gold” and therefore the Target Id is
set to 3. It is also possible that future

Hull generators can also use MeshPieceAttachments which are

MARCHING CUBES

Marching cubes is the most common visualization
method for data and is mostly used for terrain or
other natural environments because the
appearance is completely smooth. The
smoothness is either 0 or 1 or “Non-Solid” or
“Solid”. If the cell value matches the TargetID, the
cell is marked as “Solid”.

The appearance settings define the visual
appearance of a hull generator. It usually contains
a material, UV power and optional smoothing of normal
coordinates.

VoxelMaterial: Material used for the mesh pieces.

UV Power: UV Multiplier for the mesh pieces

Smooth Angle: Smoothing Angle of normal coordinates.
Note: If the smoothing angle is greater than 0, an extra
computation step is required which increases higher
performance impact. The middle image show the result
with smoothing angle set to 0 and the bottom image has
a smoothing angle of 180.

CRYSTAL

This hull generator generates a crystalline structure and can
be used for 2D only visualizations by using the default quad
provided by Unity as Crystal mesh (top image). This
generator also has the resolution settings which are also
found in marching cubes hull generator. The only difference
between crystal and marching cubes are the crystal shape
settings:

Crystal Mesh: Defined crystal shape. Low poly shapes
recommended.

Voxel Material: Material applied.

Offset Min/Max: Positional offset.

Scale Min/Max: Random scaling of each crystal

Scale Factor Min/Max: Multiplier.

Rotation Min/Max: Random rotation of each crystal

Probability: Probability of crystals being generated for
each solid cell.

Seed: Seed used for randomness.

The performance impact of the crystal hull is lower than
marching cubes especially if the crystal shape is the default
quad. Therefore this visualization is recommended when
the cell field is huge. Also randomness can be used to give
the result a more interesting variation like in the middle
image.

CELL DETAIL

The Cell Detail hull generator is similar to the
crystal one except that it instantiates a prefab for
each cell it wants to visualize. Also the settings are
almost identically to the crystal hull generator. The
only difference is that you have to assign a
GameObject instead of a mesh shape.

Since it instantiates a GameObject for each cell it
matches, it is recommended to use this hull
generators for rare cell ids since it is supposed to be
used for details. If the visualization only contains a
mesh and some effects, it is better to use the crystal
hull generator instead.

The only reason to use this hull is when the cell
should somehow interact with the outside world
(not cell system world)

MESH PIECE ATTACHMENTS

Every hull generator which generates mesh pieces can be
further modified by applying mesh piece attachments. These
scripts are located inside the 0_Core folder which is a special
folder shared between multiple Unity Assets and is updated
regularly. In order to use an attachment, simply add the
attachment as component to the GameObject containing the
hull generator which should be modifier.

The sample attachment below instantiates an assigned
particle system and attaches it to every mesh piece. Then it
also applies the procedurally generated mesh as shape to the
particle system. Additionally it also controls the particle
emission in order to maintain a stable particle effect.

The image below shows the result with particle effects. The
shape module of the original particle system must be active
and the shape set to “Mesh Renderer”.

CELL RULE SYSTEM

The cell rule system is used to implement cellular automata functionality
like Convay’s Game of Life. The cell rule system is implemented by simply
attach GameObjects which contain a CellRule component to the
CellGenerator. It is also allowed to group the rules in an empty GameObject
as it is done in the samples.

The basic principle of the cell rule checks the ID of each cell and applies one
or more rules defined for the specific ID. Therefore every CellRule
component has a TargetID parameter. The rule appliance algorithm is a 2
step process. The first step checks neighbored cells accordingt to rule
templates in order to generate a result-value. Then Result Evaluation
templates define what should happen to the checked cell according to the
result-value calculated in the previous step.

RULE TEMPLATE

Every rule template checks exactly one cell and and modifies
the result-value according to the comparison mode. If the cell
matches the comparison, the CorrectModifier parameter is
added to the result-value. Else the IncorrectModifier
parameter is added to the result-value instead.

The X, Y and Z value defines the neighbor of the cell which is
currently checked by the rule system. So a value of 0,0,0 would
check the center cell itself.

The Comparison Modes supports Equal, NotEqual, Greater
and Smaller.

Every CellRule component has at least one Rule Template to set. Then according which derivate
is used, more Rule Templates are generated procedurally. For example the CellRule_Border
automatically duplicates the RuleTemplate to match the field defined by the Border X,Y,Z values.
Otherwise you would have to define 8 or more cells manually which is tedious.

RESULT EVALUATION

After the result-value has been calculated, result evaluation templates decide what will happen
to the cell being checked according to the result-value. A cell rule can have multiple Result
Evaluations and if multiple evaluations would apply the correct modifier, the latest will have
priority. The correct modifier is applied if the result-value is between the Min Result and Max
Result parameter; else the incorrect modifier is applied. The possible Modes to apply the
modifiers are Set, Add, Multiply and Divide but mostly only Set and Add are required. If mode is
set to add and the modifier is 0, the ID of the target cell will not be modified as adding 0 to
something has no impact.

CELL RULE COMPONENTS

CELL RULE BORDER

The Cell Rule border is a convenient system to check all
neighbors around a cell. The Border X,Y, Z value defines
the border and it also can go into the third dimension. It
creates multiple rule templates according to the original
rule template defined in the inspector.

If border X and Z is 1 and Exclude Center is set, the rule
will check its eight neighbors.

If border X and Z is 2 and Exclude Center is set, 24 cells
will be checked.

The X, Y, Z values of the original rule template are used as
offset and usually are 0.

CELL RULE PATTERN

This Cell Rule component offers a convenient way to
design rule templates according to a pattern field.

Size_X and Size_Y define the size of the pattern field
and the field in the inspector adapts according to these
values.

Each cell in the pattern field represents one Rule
Template and when left clicking on one cell, the value
is modified according to the Pattern Modify ID
parameter and the color will turn to yellow since it is
now enabled.

Right clicking on a cell will turn the value to “-1” which
marks the pattern cell as disabled and the color will
turn to light grey.

With this tool, it is possible to create complex
requirements. The Alignment parameter is just the
coordinate axis used and by default is set to XZ since
the Y axis is the height.

CELL RULE DETAIL

This is the most basic Cell Rule component and only contains a list of Rule Templates and a list of
Result Evaluation templates. This component has the highest amount of flexibility but every rule
has to be defined manualy.

EXAMPLE RULE: GAME OF LIFE

 According to the original rules, the game of life has basicly 2
states which are “Dead” or “Alive”. A cell will survive if 2 or 3
neighbor cells are also alive, else the cell will die. A dead cell is
ressurected if the eighth neighbor cells have exactly 3 alive
cells.

In order to implement this, just two Cell Rule components are
needed. The first rule is applied to dead cells (ID 0) as the
Target ID is 0. This component will generate 8 rule templates
because Border X and Y is one, excluding the center.

All cell rules increase the result-value by one if the ID is 1 or
“alive” because the Target ID of the original rule template is 1.
The result-value does not change if the check is incorrect since
the incorrect modifier is 0. If the result-value is 3, the Result
evaluation will set the ID of the evaluated cell to 1 resurrecting
it.

The second rule is simply there to turn an alive cell into dead
cells if the result-evaluation is not between 2 or 3.

MOBILE SUPPORT:

Cell Generators can be used on any mobile device. However it is recommended to use lower
resolution cell maps since mobile devices are not as powerful as modern gaming computers.
Large Cell maps are no problem for mobile devices as long as no excessive visualization is used.
The main limitation is GPU based because the CellGenerator is optimized for multi core CPU
usage since the GPU already is busy rendering the geometry. Also having the burst package
installed is highly recommended.

VR/HIGH END SUPPORT:

Cell Generators can be used in VR applications as the hull generators only generate meshes
procedurally. All my assets avoid the usage of any gimmicky stuff as the result is always a
procedurally generated mesh which is rendered using the standard mesh renderer and a
material of your choice.

For high end stuff, only the memory is the limit. Actually the maximum cell count is set to 5
million cells which should be high enough. Also large maps should have a higher hull subdivision
as only a fraction of the region must be updated when cells change.

FREQUENTLY ASKED QUESTIONS:

Q: Why does a CellGenerator has boundaries?

The underlying data structure requires a cell field which must be represented somehow. The
size of a cell field is fixed after initialization in order to maintain consistency.

Q: Does this asset work on lower Unity versions?

The minimum required version to officially get this asset is 2019.2.11f1. It compatibility may
work below 2019 until it hits the hard bottom of 2018.1. Below the asset will not work because
the burst compilation does not exist below 2018.1

Q: What are the best settings?

For Mobile, a cell dimension below 256x2x256 and a hull subdivision of X4, Y1, Z4 is
recommended.

Lower hull subdivisions means more vertices per mesh piece which increases GPU efficiency but
increases CPU load during generation. Higher hull subdivision values reduce CPU load but
increases the GPU load because more GameObjects are used.

Q: Why is 3D cell generation not recommended?

The cell generator is optimized for fast cell access in order to allow real time cellular automata
functionality. Therefore the data structure has no memory optimization. Furthermore going into
the third dimension will generate a cubic performance increase for example a field of 256 x 1 x
256 has 65536 cells. If we go into the third dimension such as 256*256*256, this turns into 17m
cells filling up your memory. Cubic fields of lower dimensions are still possible like 128*128*128
which has a cell count of 2 million which is lower than the safety limit of 5 million.

LAST NOTES:

If you have any questions, suggestions, bug reporting don’t hesitate to contact me. If you are
going to sell a game which uses this asset, inform me because I may buy your game and play it

Contact Information:

E-Mail: m.hartl@fraktalia.org

Homepage: http://fraktalia.org/

mailto:m.hartl@fraktalia.org
http://fraktalia.org/

