
V O X E L I C A

INTRODUCTION:

Voxels are volumetric structures which are used to simulate real world atoms. Each voxel
simulates one atom which can be modified. Voxel engines are often used in computer
tomography and games such as Minecraft and Space Engineers. Often these games completely
optimized towards the voxel engine which limits the usability by an great amount,

The aim of this asset is to provide a way to use voxels as an additional feature in your game
while maintaining a normal workflow. Additionally, this asset also offers full flexibility over the
data structure itself as nothing is hidden behind DLL walls or C++ bridges as it is often found in
other assets since burst compilation makes this obsolete.

COMPATIBILITY INFORMATION

The voxel generator is fully compatible on every build target as it works fully independent of any
unity function with the exception of burst and job system. The burst and job system is not
mandatory but increases performance by a huge amount. The generator works on build targets
without burst support but without the performance boost. Here is a list of tested build
platforms:

 Windows/Mac/Linux: Normal and supports burst.

 Android/Ios: Normal and supports burst. Beware the lower memory on mobile devices!

 WebGL: Works but no burst support (may change by Unity in the future)

 Consoles: I don’t own dev kits so I cannot guarantee functionality. Expected to work but
burst may not be supported.

Technology Compatibility:

 AR: The voxel block can be placed as AR augmentation into a mobile app and can be
modified after that. Keep in mind the reduced amount of memory on mobile devices.

 VR: Full VR support as the engine was implemented for a VR sculpting application.

Limitations:

 32 Bit systems: Memory limit to 4096mb RAM could be exceeded easily which results to
app crash. Burst version 1.5.0 – 1.5.4 crashes the app on 32 bit builds for unknown
reasons. ! (Engine warns you!)

RENDER PIPELINE INFORMATION

The Voxel Generator works independent of the render pipeline used. The important change is
related to the material which has to be used when multi material setups should be used.

Almost all samples use the built in standard shader. The only exception are the materials which
use texture arrays in order to smoothly blend between materials.

The texture array related shaders are used across multiple assets and are inside the 0_Core
folder. This folder now has a HDRP section, containing a “TextureArray_RP.unitypackage” file
which contains shader for the dedicated functionality.

You have to either have HDRP or URP applied correctly in order to use those shaders. Double
click to the TextureArray_RP file. After unpacking, the new content contains the .shadergraph
files for HDRP and URP. Additionally a test scene is also included

The sample scene contains one object representing the HDRP version and one showcasing the
URP version. Since you cannot have both render pipelines active, the unused version shows the
error like in the image below. The left one is the HDRP version and the right one shows the URP
version.

The shader graphs itself are almost identical but minor things are still different which is the
reason why separate versions are required.

Since adding a UnityPackage into the asset causes the “Asset Validator” to fail leading to an
instant rejection of the Asset by the review system, the HDRP/URP package can be downloaded
from the here;

https://fraktalia.org/project/voxelgenerator/?et_fb=1&PageSpeed=off

https://fraktalia.org/project/voxelgenerator/?et_fb=1&PageSpeed=off

HOW TO USE:

For fast testing, just drag in one of the provided VoxelGenerator
prefabs in your scene. Ideally you start with
VoxelGenerator_Modular_Recommended as it contains everything
needed in order to get started. Also it contains all the newest
functionalities.

All prefabs with the exception of the “NoVisuals” version have
visualizations attached so the initial block becomes visible
immediately.

The recommended prefab contains 5 components:

1. Voxel Generator: This is the main voxel
engine. No voxels without this!

2. World Generator: This system allows you to
create procedural content especially terrain.

3. Voxel Save System: This system provides all
saving/loading functionalities.

4. VoxelModifier V2: Main system to modify
Voxels.

5. VoxelModifier V2 Raycaster: Allows you to
paint in edit/play mode.

When you dragged the prefab into the scene, you will
see a black frame and the Indicators from the voxel
modifier. This is the uninitialized state. Enable gizmos
if you don’t see it.

In the inspector there are buttons to initialize it. You
can either load data from the save system, retrieve data from the world generator which is
procedural or create an fully empty or fully filled voxel block.

In the screen below are the results after pressing Generate Block ID 255 (left), Generate World
(middle), Load Data (right)

A initialized voxel generator is visualized as light blue box. If
you click “Rebuild Hulls”, you see it lighten up a bit, indicating
that it is doing some work right now. Processing the Voxel data
and updating the visualization afterwards.

Once it is initialized, you can sculpt the volume using the
attached VoxelModifier_V2_Raycaster. By holding “left CTRL,
left STRG”, the light blue circle will move to the position of the
cursor. With left click you are adding material, with right click
you remove material and middle click smoothes the area.

The VoxelSaveSystem provides options for saving the
volumetric dataset and automatically saves the voxel data when
saving the scene itself. The standard setting “Scene” is the most
convenient method as it simply stores the data into the “.unity”
scene file and is fine for voxel date with smaller resolution.
However the Unity serialization slows down the Unity Inspector when the size of the voxel data
becomes too large. For such cases, it is better to save it as ScriptableObject in order to keep the
Unity scene file small. The recommended sample has disabled all Auto Save options.

The visualization itself is separated from the main
VoxelGenerator GameObject and is a separate GameObject
attached as child to the VoxelGenerator. The prefab
contains a child object called “HullGenerator” which is the
visualization script.

When you select it, you will see that by default Marching
Cubes CPU is selected which is the fastest and most
optimized. You select different surface algorithms like in
the image below:

When importing this asset the first time in a fresh Unity project,
the Burst and Collection package probably is not installed.
Fortunately it is now easy to install the latest version by clicking
on both buttons which are visible at the VoxelGenerator
component. Burst will boost the performance and Collections
updates the internal native data structure.

MAIN COMPONENTS:

The main components are the VoxelGenerator, VoxelSaveSystem and the World Generator.

Each VoxelGenerator could exist without the VoxelSaveSystem or World Generator if saving and
procedural terrain generation is not required.

Scripts which modify voxels can be attached to the VoxelGenerator but ideally are separate
objects:

1. VoxelModifier_V2: Main component used to modify the block during edit and play
mode. Don’t forget having also the VoxelModifier_V2_Raycaster attached for editor
sculpting!

2. VoxelModifier(old): Is the old VoxelModifier which is included will be deprecated in
Voxelica V2

3. Procedural Voxel Modifier: Variety of modifiers or converters which are not suited for
runtime voxel modification due to their complexity and computation expensive
processes. Mesh To Voxel is such example!

VOXEL GENERATOR

The VoxelGenerator is the main component of the whole
voxel engine and provides the hierarchical data structure for
the voxel data.

Volume size: Defines the physical dimension of the voxel
block, the amount of space it will occupy. The blue frame in
editor view gives an indication about the size. Negative
Values will not be accepted. Values between 1 and 100 are
ideal performance wise. Values too low or too high could lead
to floating point precision errors.

Subdivision Power: Defines the layout of the underlying
data structure. The blocks in the images show the subdivision
power of 2 and 4.

The most basic subdivision power of 2 represents the
traditional Octree which is used in many other voxel engines
and therefore is the recommended setting since it has the
lowest memory footprint

Subdivision power higher than 2 changes the tree so it has 64
children instead so reads/writes are faster which is desired
under advanced circumstances.

Initial Value: The initial value of a freshly generated voxel block. Value of 255 represents fully
solid and 0 means usually empty. However the real behavior is dependent on the attached hull
generators.

Dimension Count: The Voxel Generator has a fourth dimension. If this value is greater than one,
the Voxel Generator will manage more than one Voxel Data simultaneous. The first dimension is
always used to describe which regions are solid. Additional dimensions are hidden unless the
hull generator uses the additional dimension for some shenanigans such as Multi Texture
support where the second dimension describes the material type.

The recommended sample uses Dimension 0 for Solid Material and Dimension 1 for texturing.

Lock Hull Updates: If true, changes to the dataset will not update hull generators. The save
system influences this value when loading voxel data. Voxel modification is still handled. World
generators also lock the generator during generation.

SUB SYSTEMS

Save System: Confirmation that a save system is connected to the Voxel Generator.

World Generator: Confirmation that a world generator is connected to the Voxel Generator.

OTHER SETTINGS

LOD Distance: Parameter to define LOD and can be used by Hull Generators to implement LOD.
Images show the recommended sample with LOD 0, LOD 1, LOD 2.

ChunkHash: Chunk information which is important for World Generators and Multiblock
Systems. You can change this manually but it may be controlled by external sources.

Memory Optimized: Forces the generator to delete lists when not needed. Highly improves
memory demand but slightly lowers performance as the allocation of memory is not free. The
optimization is really huge so it is recommended to have this set.

Debug Mode: Used for development and visualizes information in order to verify correctness. If
true, a yellow box highlights dirty regions

INFORMATION

 Is Initialized: If true, generator is initialized.

 Hull generators working: Shows if hull generator are updating the visualisation.

 Is Idle: Generator is idle if no hull generator is working and also no voxel modifications
have to be processed.

 Is Extension: True if it is an extension. Is used with infinity world systems or other third
party scripts.

 Dimension Garbage: Shows how many voxels are in the reservoir/garbage dump for
reusing. Under the hood, a reservoir provides each voxel block with voxels and the
garbage indicates how many voxels are “outside” the voxel block.

 Is Locked: Shows if the generator is locked. The reasons are processes in the
background requiring the generator to be locked until it is finished. Can only be set per
scripting.

BUTTONS

Generate Block: Generates a fresh voxel block using the initial value as starting parameter
 Button variations with ID 0 and ID 255 exist for convenience.

Save Data/Load Data: Saves/Loads the voxel data using the VoxelSaveSystem. Is only visible if
the engine has one assigned as subsystem.

Generate World: Generates a procedural world using the world generator.

Resets: Destroys the existing voxel block.

Rebuild Hulls: Regenerate the hull generators.

Kill D(X): Destroys the specific dimension. (all voxels become 0)

EXPORT OPTIONS

The Voxel Generator also provides an option to export mesh
generated by hull generators. When opening the export options,
a white box appears at the center of the local position. You can
define the name, path and the pivot point. By default the pivot
point is (-0.5,-0.5,-0.5) which is in the center of the full voxel
block. In the right image, (0,0,0) is the bottom corner and (1,1,1)
is the upper right corner.

The white box is a helping indicator to see where the content
will be relative to the pivot point of the game object. The right
image shows that the pivot of the export product matches the
center of the game object.

The exported file is a .asset file as exporting as .OBJ or .FBX is
only possible with dedicated third party tools due to legal
reasons.

TECHNICAL PART:

GenerateBlock(); Generates a fresh voxel block using the initialValue as starting parameter.

ResetData(): Resets all voxel maps on this generator. The initial id of the root will become 0.

SetVoxels()/SetvoxelsAdditive(): Provides direct functionality to modify voxels either directly
or in an additive fashion. Basic parameter usually is the local position, target depth and the ID.
These functions come in a variety which allows lists and NativeVoxelModificationData which
usually is used by the save system or procedural block generators (future content).

Rebuild(): Regenerates the hull generators.

Cleanup(bool includeStatics): Destroys the voxel block. Also cleans static native containers if
includeStatics is true and is only required inside the Unity editor to prevent memory leaks.

SetRegionsDirty: Marks region as dirty so the visuals have to be updated.

SetNeighbor(int ID, VoxelGenerator generator): Connect the voxel generator with another
voxel generator. ID is the position where 0 is bottom left front and 26 is top right back.

RemoveNeighbor(int ID): Removes the connected voxel generator. Alternate
RemoveAllNeighbor function removes all neighbors connected.

GetVoxelSize(int depth): Get the voxel size at target depth. Depth 0 is the volume size. The
higher the depth, the smaller the voxels become.

GetBlockCount(int depth): Calculates the amount of voxels the generator would have if every
voxel would have the same depth.

GetBlockWidth(int depth): Amount of voxels the generator would have in one direction if
every voxel has the given depth. Result * Result * Result would be the Block Count.

Show/Hide Visuals(): Shows or hide the visuals (meshes generated by attached hull
generators)

ClearMeshes(): Clears the content generated by hull generators.

VOXEL SAVE SYSTEM:

The VoxelSaveSystem is the main component for persistence and
should always be together with the VoxelGenerator. The only
exception occurs if the content is completely procedural and
persistence is never intended. This component is also required
since modifications inside the editor should be saved. If the
VoxelGenerator was modified in during edit mode, it will be
marked dirty and saves the voxel data automatically when saving
the scene. (pressing ctrl+s)

There are 3 different saving options where the first one is “Scene”
which saves the voxel data directly into the scene. This saving
method is fast and convenient since there are no extra files to
manage. However this mode will slow down the inspector when
high resolution voxel data is used.

The second mode is “Scriptable Object” which stores the data as
scriptable object in the asset database. This option causes less
overhead for Unity and keeps the scene file small. Also causes no
serialization overhead which is useful for high resolution voxel
maps. Also this method is better for version control systems such as
git since there are more small files than one big scene file. Also
merge conflicts are easier to avoid since voxel maps can be merged
while Unity scene files still have merge issues in git. Also data from
the “Scene” option is removed when saving with this mode since
having data in the scene file is obsolete when it already exists as
scriptable object. Additionally, this saving option comes with a
management system and has following settings:

 Duplicate Map on Clone: If true, duplicates the voxel map if you duplicate the
VoxelGenerator inside the editor. It clones the original voxel map and automatically
assigns it to the cloned object. The naming is “VoxelMap” + the instance id of the cloned
GameObject. The location of the cloned map is in the same folder as the original map.

 Save in scene sub folder: If true, a new voxel map is generated and placed into a
subfolder where the Unity scene is located during saving if no map is assigned. The
subfolder is created automatically if it doesn’t exist yet. If false, newly generated voxel
maps are placed into the assets folder.

 Remove voxel map on delete: If true, voxel map is automatically removed from the
asset database. Note: Removing is not undoable and is permanent!

The third mode is “Persistence Datapath” and just requires a name as identifier (without
“.VOXEL” ending). It directly stores the voxel map as .VOXEL file into the persistent data path of
your target device. This mode is supposed for persistence during gameplay where the player can
save voxel maps. Savings are not handled inside version control systems since these files are
probably not inside the repository and will only exist locally unless shared by external services.
This saving mode is the fastest for saving and loading and is optimized for real time
saving/loading.

Saving as Persistent Datapath has 2 sub variations which is “World” and “Region”. The
difference is just the naming and management in order to be able to match it to chunk positions.

“World” and is similar to “Persistence Datapath”. However
this saving method is supposed to be used with the infinite
world system. The main parameter is the World File Name
and describes the name of the infinite world. Also the voxel
map file is stored as .voxelworld.

“Region” is similar to “World” and can only be used in combination with the infinite world
system. The settings are identically to the “World” mode but with the addition of a World Region
Size parameter. The file type of this mode is .voxelregion and each file contains the voxel data of
World Region Size * World Region Size * World Region Size voxel blocks. If .voxelregion files
exist at the target path, the World Region Size parameter cannot be modified.

For example if the World Region Size is 8, each file will cover 512 chunks. Therefore an infinite
world has much less files which reduce hard drive read/write operations by a significant
amount. This reduces performance impact at the cost of higher working memory demand since a
large amount of voxel data will be stored inside the RAM.

The World Chunk is set automatically and describes which chunk is stored.

The World Folder is used when storing world information in the asset database and is assigned
automatically to the scene asset location when “World To Scene Location” is flagged.

World Loading Rule describes which data storage has priority. If the infinite world is modified
during edit mode, it is stored in the asset database since the persistent datapath only allows
local data. When voxels are modified during gameplay, the modified data is in the persistent
datapath since it was created during gameplay. The rule describes what should happen when a
chunk has data in the Asset Database and in persistent datapath at the same time.

If Auto Load In Editor is true, voxel map will be loaded automatically when entering edit mode
or loading the scene.

If Load On Start is true, the voxel map will be loaded on scene initialization during play mode.
Also the hull generators are forced to finish their work immediately (else RigidBodies could fall
through half-finished voxel blocks).

V2 UPDATE:

V2 introduces a set of new saving methods. Persistent Datapath V2, World V2, Region V2 are
identical to the V1 saving modes but have significant higher performance!

New is Save To Path V2 which simply allows you to save a file to a location defined by yourself.
The editor inspector allows you to select a voxel file using the file browse.

The last addition is Byte Buffer V2 exists for networking as it will store the data in a dictionary
as byte buffer. The dictionary is static and the content is not persistent. The resulting byte[]
buffer is the most granular data structure and ideal for sending to clients using your network
solution. The OnDataBufferSaved event is fired when saving is complete and ready to be sent to
anywhere.

TECHNICAL PART:

Load(): Loads the voxel data and rebuilds the VoxelGenerator

Save(): Saves the voxel data instantly. (causes performance spike)

SaveBinary(): Saves the voxel map as binary file. VoxelName member variable is used as
identifier for example “VoxelMap1” without “.VOXEL” as ending.

RemoveBinary(): Removes the binary file at persistent data path. VoxelName is filename.

DynamicSave(): Real time saving option which does not cause performance spikes. Saves the
voxel map as binary file into the persistent data path and should be called without interrupting
gameplay. VoxelGenerators are Locked during saving process.

DynamicLoad(): Real time method to load any voxel map from any source without interrupting
gameplay. VoxelGenerator can be modified during load but hull generators are suppressed until
loading is finished.

ConvertRaw(VoxelGenerator generator): Converts the voxel data of a initialized
VoxelGenerator into a format which can be stored. Shrinks the data by gathering the leaves only.
Returns RawVoxelData which can be saved or applied to an existing VoxelGenerator.

ApplyRawVoxelData: Applies RawVoxelData to a target VoxelGenerator

WORLD GENERATOR

The world generator was previously related to the
deprecated infinite world system and became now the
second sub system similar to the save system. The
main difference between the World Generator and the
Save System is that the Data from the World Generator
is generated procedurally. The world generator will
generate voxel data based on algorithms whenever the
chunk which should be loaded has no saved data.

How the world is generated is defined inside a World
Algorithms hierarchy. Since it is possible to use multiple
voxel dimensions, the generation is separated into
WorldAlgorithmCluster sub objects (Dimension0,
Dimension1)

The WorldAlgorithmCluster only defines the target
depth and target dimension. WorldAlgorithms can be
attached to the cluster in order to mix different algorithms together.

Biome support probably may be implemented as derivate of a WorldAlgorithmCluster as smooth
transition between 2 biomes is also required.

The world generator is applied automatically to the Voxel Generator component attached on the
game object. Clicking on Generate World will initialize the generator and apply the world data.
It also uses the ChunkHash parameter provided by the Voxel Generator to define the position.
This is important for multi-block systems.

You can also apply the World Generator to any Voxel Generator using these functions:

Initialize (VoxelGenerator generator): Initializes the world generator and all algorithms
attached to it. Should be called once or when algorithm parameters changed. The input
generator is then used as reference.

Generate (VoxelGenerator targetGenerator): Requests a world generation for the target
generator when safety is valid. Requests are added to a queue and processed one by one.

CleanUp(): To clean everything up.

WORLD ALGORITHM CLUSTER & WORLD ALGORITHMS

 The World Algorithm Cluster is the main container of World
Algorithms and therefore can contain a mix of different World
Algorithms. The Cluster itself only defines the Target Dimension
and Depth. Modification parameters are then provided by the
specific algorithms.

The sample in the right image has 2 algorithms attached as
children. The first one creates a terrain based on a texture and
the second one subtracts material to create caves.

Another important feature is the auto updating system which helps designing the procedural. It
has a very strict safety system as it also updates the result when changing the Dimension and
Depth. Increasing the Depth otherwise could quickly freeze Unity3D.

The world algorithms are the main components for terrain
generation. There is a variety to choose from and is regularly
expanded.

Describing every algorithm implemented is pretty
overwhelming so it is easier to check the sample scene and
experiment with them as they are updating automatically.

Every algorithm has an Apply Function which is important for
mixing.

The current options are Set, Add, Subtract, Min, Max and their
inverted versions. The first algorithm usually has Set. The
inverted versions apply 255 – value instead.

It is also important that some Apply functions are highly
sensitive to negative values especially Add/Subtract.
Therefore a post process function is also included.

MULTI BLOCK

The multi block is one of the recent addition to Voxelica
and allows you to connect multiple generators together. I
In order to utilize this system, create a game object and

add the VoxelGeneratorMultiBlock script.

Afterwards attach one VoxelGenerator to it as child. Then
assign this the attached VoxelGenerator as “Reference” to
the VoxelGeneratorMultiBlock script.

The VoxelGenerator assigned in the Reference field acts
as reference and marks the center chunk of the multi
block setup. After the assignment, a subtle white and
yellow box frame becomes visible. The reference has a
white box additionally to the yellow one

Now duplicate the reference and move it away from the
center. It will try to snap into a chunk position. You can
create as many as you want and also move them in the Z
axis.

Afterwards click one of the Generate Buttons. It will initialize all generators. After initialisation,
you will notice that there are gaps between the hulls. This is because they are now initialized but
not “Connected”. In order to connect them, click on “Connect Generators”.

When they get connected, you will see the gaps disappearing as the hulls are updated! Also the
lines between the generators show that they are connected.

INFORMATION

 Update Chunk Hash: If true, the Chunk Hash is updated according to the position
relative to the reference. If you are using world generator, it makes sense to have this
checked otherwise the world will repeat itself.

 Use Individual Worlds: Another setting for the world generator. If unchecked, the
world generator of the reference is used. Otherwise individual world generators are used
instead.

 Use Reference for Initial Values: Generators are initialized with their initial value
being usually 0. Having this checked overrides the initial value of all chunks.

 Use Build Sequence On Start: If checked, it will initialize on start.

 Load On Start: Apply save system on start.

 World On Start: Apply world generator on start.

VOXEL MODIFIER

The VoxelModifier is the third component and the main tool to
modify voxels. This script allows painting during edit mode
and provides other functionality to modify the dataset. It
allows 3D painting on solid geometry but also supports 2D
painting in cases where you want to use Voxel for 2D games.
The most important parameters are the radius and depth. A
safety system is implemented which prevents insane settings
like radius 10000 and depth of 20.

Target Dimension: The dimension which should be modified.
Standard value is dimension 0 which is the normal Solid-
Nonsolid voxel map. What exactly is modified is highly
dependent on the hull generator attached. Dimensions greater
than 0 may be used for material, temperature, humidity,
holy/unholy ground etc.

Depth: The target resolution.
ID: Independent ID used to modify the dataset when
ModifyAtPos is executed.

Shape Settings:
The main basic shapes are Sphere, Box and Rounded Box and
Single:

Sphere is the most basic form and is only defined by the
radius parameter.
Box is defined by the Box Size which defines width, height
and depth and a rotation parameter.
Rounded Box is similar to Box shape but has additional
parameters for radials. This option provides the maximum amount of freedom without using
more complex functionality. The sample image shows the settings for a cylinder with a radius of
10 in Y axis.

Single Modifies one single block (Minecraft Style). This mode has no parameter as it only
modifies one single voxel according to the given world position.

The function called WorldPositionToVoxelPoint is used to evaluate the exact position of a voxel
according to the target depth and returns the voxel position as world coordinate. Additionally a
normal direction and normal offset can be used to apply an offset.

In order to simulate Minecraft like behavior (left click destroy, right click place), the normal
offset should have a value of -0.5 when destroying a block and 0.5 when the user places a block
with right click. The normal direction must be fetched from the raycast hit information.

Estimated Modification Count: Indicator of the safety system which shows how many voxels
would be modified. Safety limit are 100000 voxels per modification. The referenced Voxel
Generator is the one which is targeted first as multi block editing is possible.

Modes: There are separate modes for left and right click including a separate target ID applied.

 Set: Sets the voxel ID to the target ID.

 Additive: Adds the target ID to the voxel ID (target ID can be negative)

 Subtractive: Subtract the target ID to the voxel ID (target ID can be negative.

 Smooth: Applies mean filter to the target region. Target ID is used as strength.

 Rough: Unsmooth target region. If Voxel ID is greater than Target ID, it becomes 255 else
it becomes 0.

 SolidPaint: Changes voxel ID to target ID if voxel ID is not zero (for AtlasCubes painting)

This component can be used to modify multiple VoxelGenerator at once. Therefore the
VoxelModifier has a variety of options to determine the targeted generator. The simplest way to
assign a generator is by simply adding one or more VoxelGenerator to the “Always Modify” list.

If White List is true, only VoxelGenerators assigned to the whitelist will be modified if they are
fetched by the sphere cast.

The Sphere Cast Layer defines which layers can be hit by the sphere cast.

MaxChanges limits the amount of voxel generators which can be modified at the same time.

LimitBreaker: Is required when infinite world mode is active. When a
VoxelGenerator_BoundaryBreaker script is assigned, the automatic fetching system is
determined by the infinite world. This allows boundless sculpting.

Editor Tools: These are entries for editor sculpting and provide an option for left, right and
middle mouse clicks. Each option has an ID and Mode parameter.

The main function “ModifyAtPos” will execute a modification command and requires the target
world position as input parameter. This function is called by the sample controller whenever the
player holds CTRL while clicking on a solid surface. This function can be called from anywhere
such as a projectile calling this function on impact to destroy the environment. Usually you can
also set ID and Radius to the desired values before calling it.

Additionally an “ApplyPositioning” function is included which requires a VoxelModifyPosition
component and can be used for procedural voxel map generation.

POSITIONING ALGORITHMS

The VoxelModifyPosition are components used for
procedural positioning for modifications. The sample scene
Marching Cubes contains a snow producer GameObject
which uses such component.

If the GameObject containing a VoxelModifier component
also contains a VoxelModifyPosition, the VoxelModifier
component will contain buttons to apply the positioning
algorithm during edit mode.

The main parameter of a VoxelModifyPosition is the
ModifyRadius Min/Max for randomness and the collision
layer. When such GameObject is selected during edit mode,
a preview will indicate where the positioning algorithm
could be applied.

Currently included positioning algorithms are Sphere, Beam
and Box. The spherical positioning can be used for explosion
effects as It does ray casts from a spherical direction. Beam and Box are “lasers” where ray casts
are shot in one direction where Beam is cylindrical and Box is rectangular.

Voxel Modifier V2 also supports this.

VOXEL MODIFIER V2

The VoxelModifier V2 is a complete overhaul of the old
VoxelModifier. It has Undo/Redo functionality and allows
the alteration of modifications such as Hardness, Filling,
Destruction and is constantly expanded with new
content. It also has a significant improved performance.

Overall it is a modular system comprising of 3 modules
which are: Targeting Module, Shape Module, Post
Process Module.

The Target Module determines which Voxel Generators
can be modified. Usually you have those assigned in the
“Always Modify” script but fetching them using sphere
cast is also possible.

Shape Module: This module determines the shape.
Sphere, Box and Ellipse are the most generic ones. Future
updates will introduce additional shapes.

Post Process Modules: Post process modules alter the
modification itself. There can be more than one post
process module. However some modules like
“CopyPaste” will interfere with previous post processes.

The samples in the VoxelModifier V2 Use Cases show
the effects of the individual post processes.

The primary settings like Target Dimension, Depth and Mode are identical to the old
VoxelModifier. Additionally it has some very important new settings:

 Require Voxel Data: Some post processes are dependent on the current voxel data in
the affected area before it is modified. For example ShapeFill has to check the values of
current voxels in a “Shape Dimension” in order to determine if voxels should be
modified or not.

 Processing Speed: Multiple modification calls are queued. Value defines how many
modifications are processed per frame.

 Clean Modifications Only: This is important if post processes have rules which could be
breached by using outdated voxel data while the engine is updating the data. If true, the
modifications will be foolproof if the current data of the dimension which is modified at
the same time is important as they are only processed when the data is not dirty.
However, the data processing will lag behind.

One important difference is that it can modify the position at its own location which is important
for stuff like “Bombs” which should modify the data at the location of the bomb when it explodes.
In editor, you can click on apply at world position or by pressing the Apply Hotkey.

However by default this component alone does not implement editor painting! In order to
enable editor painting, attach the VoxelModifier_V2_Raycaster.

VOXEL MODIFIER V2 RAYCASTER

This script implements editor sculpting like with the normal
voxel modifier. It is similar to the built-in editor painting tool
included in the old voxel modifier.

The main addition is that you can assign additional modifiers
so it will apply multiple V2 Voxel Modifiers at the same time.
The example in the right image has 2 modifiers assigned. The
main modifier modifies dimension 0.

The additional modifier modifies dimension 1. Additionally
the second modifier has invert mode override checked. This
check inverts the additive/subtractive mode so in this case,
when material is added, the values in dimension 1 are
subtracted.

The right image shows the result when applied. It “Melts” the
surface becoming lava like while material is removed. Surface

is solidified when material is added.

Besides editor painting, it also has settings for usage ingame if
active. Since you don’t have gizmos during play mode, you
need a target point to indicate where the modification will be
applied. Also you can define a target layer and a maximum
distance.

The game camera is required for the raycasts (mouse to object
surface).

SHAPE MODULES

The shape module defines the shape of the modification. The most generic ones are Round, Box
and Ellipse. Every modifier has exactly one assigned. When selected, the light blue area indicates
where voxels are modified. The white box indicates the area voxels are at least “touched” but
may not be modified as they are outside the light blue area.

All shapes except sphere have the rotation property and the white
box is adapted automatically so the rotated area fits in. Boundary
extension of 1 is recommended in order to ensure that the
modification is not cutoff

Initial ID is like the opacity value. A lower initial ID means that the
modification is much softer with smooth removal/addition of material while a huge initial ID
makes it very rough and sharp. The shapes itself are pretty straight forward.

Future updates may introduce other shapes as with V2, more complex shapes are possible.

POST PROCESSING MODULES

A modifier can have post processing module
applied in order to further modify the way
material is manipulated. One of the most basic
example is the solid paint which has uses the
“SolidPaint” post processing module.

This module is useful when the visualization is
cubic where 0 is empty and 1-255 is solid while
the value is used as lookup index in a texture
atlas. (Minecraft)

This post process now forbids the modifier
from modifying air (prevent voxels from being modified if their current value is 0) which now
allows to paint the surface with whatever ID value desired.

Also whenever you are applying post processing modules
which depend on the current voxel data, it is recommended to
have “Clean Modifications On” as it forces single modifications
at the same time. Otherwise you might experience race
conditions.

For example rule forbids reducing ID of a voxel lower than 1
but is applied twice. Before applying, the ID of the affected
voxels is 2. If both are applied simultaneous, both rules would
be valid and each modifier would reduce the ID by 1. The resulting voxel now has an ID of 0
despite the rule forbidding the reduction of an ID lower than 1. With Clean Modifications On, the
engine will wait until the first modification is done and then the second one is applied.

BETWEEN

Between is a simple post process which prevents a voxel to become lower than a given Minimum
ID and higher than a Maximum ID. If the voxel value is outside the range, it is clamped to be in
the range.

COPY PASTE

This post process implements copy and paste functionality.
When applied, it requires copied data. The raycaster will
recognize it and allows you to copy the surface with “CTRL-
C”. After that you can paint as usual using the copied
information.

The greenish sphere indicates when the modifier has copied
data.

HARDNESS (ADVANCED)

This post process is quite advanced as it introduces
hardness, making voxels with specific IDs resistant to
modification.

Ideally the dimension defining hardness is not the
surface dimension but something used for texturing. If
the dimension used to evaluate hardness is the same as
modified, clean modifications should be enabled.

In order to apply this post process properly, you need to
provide a histogram which contains multipliers for all
IDs between 0-255.

The editor provides some helpers to create such
histogram from a curve. But you can also create it
manually.

In the end the values in the histogram are multipliers like opacity while the index is the Voxel ID
where this multiplier is applied when modified.

A value of 0 makes Voxels with the affected ID immune to modifications and 1 is default.

Since negative and values greater than one provide weird results, you have the option to prevent
those.

INDESTRUCTIBLE

This post process will define a Shape dimension
and a Density dimension. The Density dimension
is matched against the Shape dimension and
ideally matches the Dimension which should be
modified.

In the end this post process, the shape dimension
defines the final shape when this modifier
attempted to remove all voxels in the entire
volume.

The right sample has 2 hull generators. One for D0
and one for D3 to highlight the shape.

Ideal usage for this is when the user has to dig out a fossil.

SHAPE FILL

This post process is doing the opposite of
“Indestructible”. It only allows the modifications of
voxels inside the shape volume.

You also define the Density dimension and the Shape
dimension.

The ideal usage for this is if the user has to “Craft” an
object using additive methods. So the user has to add
material in order to create something.

SOLID PAINT

This post process prevents voxels being modified if the resulting
ID would be smaller than the Threshold. The example with
threshold of 1 prevents voxels from becoming 0 as “Discard” is
checked.

THRESHOLD

Threshold post process simply changes the values of the modifier data. The values lower than
the threshold become the “Left ID” and those higher become “Right ID”. Usually the Shape
module produces a gradient. With threshold, this gradient is removed.

Ideally this is used with “Set” mode in combination with SolidPaint like in the image above
which. First the threshold removes all values which are on the left side of the threshold as
discard left is checked. All those on the right are set to “6”.

The image shows 6 lines (most left is hard to see) and have the IDs between 1-6

Solid paint then checks that the values are indeed solid.

The mode of the modifier is “Set”

DESTRUCTION (ADVANCED)

This modifier will create instances of the assigned
prefab when material is removed. The volume removed
is used to determine the amount of material which must
be removed.

The Minimum Material ID defines that only Voxels
which an ID greater than this value will count towards
the total volume removed in order to prevent “Invisible”
material from creating prefabs.

Required Spawn Material defines how much volume
must be removed to create one instance. Be careful with
low values as there is no safety system regarding this!

You need a prefab assigned which also can have
MeshPieceAttachments. In this case it has a “Decay”
attachment so those instance disappear after a while.

VOXEL MODIFIER V2 CALLER

This simple script allows you to call multiple
VoxelModifier V2 game objects simultaneous. This is
useful when you use VM2 as tool for level design.

There are options to apply it when the level loads in
editor.

When using the caller, make sure that no world
generators are manipulating the target generator
otherwise the result might get overwritten.

Therefore, during edit moder, it is applied with a
slight delay in order to ensure that world generators
and save systems have finished their work.

DIMENSION DEFINITIONS

When working with multiple dimensions, it is difficult
to remember which dimension is doing what and
even was a wish from a customer.

If you work with 13 dimensions like I do in my main
game, it is recommended to use dimension
definitions.

A dimension definition is a scriptable object which
contains a list of dimension entries.

You can define the name and optionally a texture
which will be displayed in the inspector when the
VM2 has a dimension definition object assigned.

Instead of dragging a slide, I can now simply click on
the button and the specific target dimension is
selected.

PROCEDURAL VOXEL MODIFIER

Procedural Voxel Modifier is a group of scripts supposed to modify the Voxel Data using
algorithms and are completely independent.

Every Procedural Voxel Modifier has the Target Generator, Depth and Target Dimension as
main parameters. Additionally you can decide if the result should be applied in an additive way
or not and if the block should be cleared completely before applying the modifier (for biomes).

The main aspects of procedural modifiers are that they have fairly complex computations when
applied or convert external data to a voxel representation somehow. Modifying the voxels itself
is the insignificant compared to the process defining what and how something should be
modified. Therefore these are not suited for real time usage and it is recommended to apply
them during level loading.

COLLIDER TO VOXEL CONVERTER

This procedural modification script converts any Unity3D
collider into a voxel representation. Any collider attached as
child to the GameObject will be used when the modification
is applied.

Mesh colliders must have “Convex” enabled. Therefore the
best way to convert a concave model into a voxel
representation is to create several convex mesh pieces and
attach them to the converter.

The first parameter “Tolerance” defines how close a voxel
must be to the collider that it becomes solid. This value
usually is very small otherwise the result will become less
accurate.

Falloffdist defines the solidity falloff when a voxel is not
close enough to one or more collider. Large values cause a
sharp falloff which makes the result blocky. Ideal value is
between 1000 and 10000 which creates a smooth result.

Final Multiplier is a simple multiplier. When additive is set
and the value is negative, material is removed instead.

In the editor window, the darkened array gives an indication
about the voxel area which will be modified. The safety
system limits the amount of voxels which can be modified to 5 million.

SUPER MESH TO VOXEL CONVERTER

This mesh to voxel converter was an attempt to improve the
original mesh to voxel converter by implementing a custom
evaluation method to determine if a voxel is inside or outside the
mesh geometry. The functionality is identically to the original
mesh to voxel converter but the parameters are slightly different:

Final Multiplier: Final multiplier of the values.

Smoothing; Value defines the smoothing filter applied to the result
by applying an average filter over the result.

Mode: Evaluation algorithm used to define if inside or outside.

Brute force simply checks every voxel if it is inside or not. Brute
force mostly is faster on simple meshes because it is very cache
friendly especially when the evaluation is cheap.

Scan Lines uses the scanlines algorithm to convert a mesh to a
voxel representation. It has to build the tree first which is costly
but then the evaluation is much faster than brute force. Therefore
it is faster when the mesh has a higher vertex count.

It is important to increase the depth only step wise as the number
of voxels increases exponentially. Also the resolution of the hull
generator should match the target depth in order to fully see the
result.

BORDER REMOVER

This procedural modifier does nothing more than
removing the border region of a block. And is the primary
method to initialize a voxel block with a defined block
shape.

It only has values to define the padding for each side but
also has the option to use Size and Pivot Point. The
affected volume always matches the volume size of the
Target Generator.

TEXTURE TO VOXEL

Texture to voxel converts a set of textures into a voxel representation.
This modifier is very efficient and is able to generate highly accutate
results. The result is generated layer by layer like a 3D printer because
it uses the slices as input parameter. Every slice requires a texture
assigned and defines one voxel layer.

The right sample uses 32 slices in order to create the ornament like
structure. In this case all 32 slices have the same texture(third image)
assigned. Also it is possible to assign different textures for each slice so
it is possible to visualize scan systems which create image slices.

The amount of voxel is automatically calculated using the depth and
boundary multiplier so it fits into the voxel block perfectly.

The boundary multiplier is used to oversample or undersample the
measurement as creating a 3D object using 2048*2048 may be too
much.

You can also select which channel you want to read. Scans are usually
in gray scale where it has no influence.

Also you can smooth the result afterwards which removes noise if
your slices suffer from noises.

TERRAIN TO VOXEL

The terrain to voxel converter was a feature requested by
customers and allows the conversion of Unity terrain into a
voxel representation. One key aspect of terrains is that they
have no 3D layout so it must be extrapolated with parameters.
Also terrains have multi texture support which means that
every texture added inside the terrain editor has a separate
alpha map.

Therefore to fully convert a terrain into a voxel representation,
you need 2 Terrain To Voxel modifiers. The first one has
Surface mode selected and writes to Target Dimension 0 in
order to create the surface geometry. The second modifier has
to read the texture heightmaps of the terrain in order to write
into the texture dimension (target dimension 1 or higher). The
mode must also be set to “Dominant Texture” or “Individual
Layer”. Also the generator, modifier, and terrain ideally have
the same world position like in the right images.

This modifier has 3 modes. The first one is “Surface”. Surface
reads the heigth map in order to create a 3D gradient which can
be moved with the Offset Y parameter. Also the modifier
automatically calculates the boundary which can be extended
using Top/Bottom Extension

Fill Positive/Negative sides would completely make voxels
below or above 0 completely solid if set.

The Fall Off defines how fast the Density decreases the further
away the voxel is from the surface.

Mode is the most important setting as it defines the evaluation
method:

 Surface: Reads the height value of the terrain. Used to create the solid geometry.

 Dominant Texture: Reads all texture layers and uses the index of the texure layer with
the highest value. Used for multi texture lookup and is multiplied by the Texture
Multiplier parameter.

 Individual Layer: Reads the value of the layer defined by Target Texture Layer

As usual, the result can be smoothed by increasing the smoothing parameter.

TEXTURE TO VOXEL TERRAIN

This modifier is identically to the Terrain to Voxel modifier as
it converts a 2D map into a voxel representation. The main
difference is that it uses a texture as input parameter instead.

It has the same paramters as the Terrain to Voxel modifier.

First you have to select the channel you want to read. Options
are Red, Green, Blue and Alpha.

Invert inverts the evaluation value. (0 becomes 1, 1 becomes
0).

Size defines the X and Y size of the final result. The lookup is
adapted automatically.

Height Fall Off defines how fast the voxel ID decreases the
further it is away from the surface. If 0, the result has no fallof
and behaves like texture to voxel modifier .

Texture Multiplier is multiplied into the texture value.

If the result should have solid ground, setting Fill Negative
Side is recommended, else the result will be a pillar.

Unless Terrain To voxel, this modifier has no mode as there is
only the assigned texture to read. The right image is created
using 2 modifiers where one writes Target Dimension 0 and
the other one Target Dimension 1.

VOX IMPORTER

The VOX Importer allows the import of .VOX files which
was introduced in MagicaVoxel

Source (https://ephtracy.github.io/)

It is faily simply. Apply a .VOX file from the database and
make sure that it is inside the boundary of the voxel
generator. Then hit the apply button.

Some .VOX files have chunks. In such case you can set
Chunkwise Generation to true and define the chunk offsets
for each chunk. In the .VOX file, the chunks only have an
index so you have know it yourself where each chunk is
located.

In order to simplify this, a helper functionality is included
which creates a box layout of chunk offsets procedurally.
Simply define the boundary in the Box Layout X, Y, Z and
hit Create Box Layout and it fills the Chunk Offsets list
procedurally.

For example 3,3,3 would create 27 entries.

https://ephtracy.github.io/

VOXEL COLLISION MODIFIER

This component can be used on RigidBodies to modify a
voxel map when the RigidBody collides with it. The main
parameters also are Depth, ID and Carve Radius. The
target VoxelGenerator is fetched automatically during
collision.

Also the positioning can be set to center point or collision
point. Center point will apply modification where the center
of the RigidBody is used as center point. Collision Point will
use the impact point calculated by the collision detection
system as center point.

Max Contacts are used to determine how many contact
points are used for modification.

It is also possible to limit the possible target generators by
using whitelist When Use White List is true, a list appears
where you can assign VoxelGenerators which should be
modified by the RigidBody.

Mode can be used to define the modification type as it is
seen in other modifiers.

It is recommended to keep the amount of “Hot Objects” low since the whole process is very
expensive. The sample scene MeltDown shows how a gold sphere is melting through the snow.

VOXEL UTILITY:

The main function provided by the Voxel Utility is the ModifyVoxels function and comes in 2
variations: One function for spherical and one for box shape modifications. The main input
parameters for the standard ModifyVoxels function are:

 generator: the target VoxelGenerator:

 Center: center point of the modification in world coordinates

 Orientation: rotation of the modification

 Size: box size of the modification

 Radials: Vector4 parameter for radial limits: X, Y, Z is the radius for axis aligned circles
and can be used to obtain cylindrical modification shapes. The last value W is used as
spherical radius.

 Depth: target depth

 ID: ID of the modification

 Mode: Modification mode.

 Dimension: Target Dimension if voxel generator has more than one dimension.

Modes: There are separate modes for left and right click including a separate target ID applied.

1. Set: Sets the voxel ID to the target ID.
2. Additive: Adds the target ID to the voxel ID (target ID can be negative)
3. Subtractive: Subtract the target ID to the voxel ID (target ID can be negative.
4. Smooth: Applies mean filter to the target region (ignores target ID)
5. Rough: Unsmooth target region (128 becomes 255, 127 becomes 0)
6. SolidPaint: Changes voxel ID to target ID if voxel ID is not zero (for AtlasCubes painting)

The spherical variant of the ModifyVoxels function has the same input parameter except size
and radials as it is replaced by an radius parameter.

The box variant has the same input parameters except the radials as it is not needed.

Additionally, this helper class provides functions to obtain information about the modification
before it starts. EvaluateModificationCount will calculate how many voxels will be modified.
This function only needs the generator, radius or size and target depth as input parameter.

Before modifying anything, it is recommended to check, if the modification is save. Therefore
IsSave function is provided which also requires generator, radius or size and target depth. This
function will return true when the amount of voxels which will be modified is greater than the
included safety limit of 100000 (you can change it on your own risk).

HULL GENERATORS

Hull generators are responsible for the
visualization of the voxel map and must be
attached as children to VoxelGenerator
GameObjects. Each hull generator has its own
settings such as resolution and material and any
number of hull generators can be attached to the
VoxelGenerator. This allows the generation voxel
blocks with very unusual properties.However
also keep in mind that more hull generators
result in a slower update rate when the voxel
map is modified as there is more work to do.

The basic parameters which can be found on every hull generator is the Engine itself which is
fetched automatically when attached to the VoxelGenerator.

Applied Hideflags are set to “Hidden Don’t Save” by default which hides generated
GameObjects and prevents them from being saved into the Unity scene file. Saving the hulls is
not necessary because it can be reconstructed at any time by the VoxelGenerator which also
applies inside edid mode. Therefore saving generated hulls is obsolete and only would bloat up
the scene file. Other options are “Normal”, “Don’t Save” and Hidden which are all combinations
of Visible and being saved.

If Locked is set, the hull generator will not update his content.

If Lock after init is set, the hull generator will only update its content when the VoxelGenerator
is initialized. Afterwards the hull generator will be locked until the VoxelGenerator is cleaned.

IMPORTANT UPDATE!

Over the years, the amount of hull generator scripts grew to a chaotic amount due to all
the performance optimization phases. As performance improvements came over time,
there are now many derivates of marching cubes on GPU and CPU. Also some have other
weird features such as “Scientific” or “Experimentel” where the data remains on the GPU.
So there is quite a lot of chaos regarding hull generators right now.

In order to solve this, there is now a hull generator called “ModularUniformVisualHull”
which consolidates all the scripts scattered around into one modular hull generator.

This means that long term it makes no sense to keep inferior hull generators which
means that most will be deprecated and removed when Voxelica V2 is released.

In future, having just one Hull Generator greatly reduces maintenance overhead for me
and it is easier for customers. Below is a detailed section dedicated to the
ModularUniformVisualHull hull generator

MARCHING CUBES

Marching cubes is the most common visualization method
for voxels and is mostly used for terrain or other natural
environments because the appearance is completely
smooth. The smoothness is caused by the ID value which is
between 0 and 255 so even voxel maps with low resolution
have smooth surfaces.

The first settings are the resolution settings. These are
common in other hull generators and define the resolution
of the final geometry. Changing most settings while the
VoxelGenerator is initialized will trigger rebuilding the hull
generators.

Width: Defines the resolution of each mesh piece. For
example a width of 8 means that one piece contains 8x8x8
or 512 voxels.

Cell_Subdivision: Defines how many mesh pieces will be
generated. For example a value of 8 means that 512 mesh pieces will be generated where each
mesh piece will cover 512 voxels if width is set to 8. The total voxel amount covered by this
voxel block would then be 512x512 (262144) voxels.

NumCores: This value defines how many mesh pieces are processed each frame when the hull
must be updated. The works of every mesh piece are evenly distributed along the CPU cores (is
decided by the Unity Job System)

The appearance settings are specific for each type of hull generator and define the visual
appearance. It usually contains a material, UV power and optional smoothing of vertex normals.

MinimumID/MaximumID : The ID range covered by marching cubes. Solid geometry starts to
appear when the ID value of a voxel is in the upper half of the covered ID range. For example
solid geometry begins at 128 when the default range of 0-255 is used.

VoxelMaterial: Material used for the mesh pieces.

UV Power: UV Multiplier for the mesh pieces

Smooth Angle: Smoothing Angle of the vertex normals.

MULTI TEXTURE SUPPORT (ADVANCED)

Since Update 1.5 Multi Texture is possible. In order to use this
feature, use MarchingCubes_MultiTexture instead. Also the
dimension count of the VoxelGenerator must be two or more.
The first dimension is used to describe solid or non-solid and
the additional dimensions are used to write into the respective
UV coordinates. The texture channels define which UV set
should be affected by which dimension.

In the example image, the second dimension writes to the UV3
coordinate of the procedurally generated mesh. The shader of
the assigned material uses the UV3 value to define which texture
should be applied. The material uses a specific shader which
uses Texture2DArrays instead of normal textures.

The simplest shader included in the core library reads UV3 in
order to determine the blending value.

Also this hull generator uses the vertex color array of the mesh
as barycentric coordinate which is required to implement 100%
seamless tessellation.

USING TEXTURE ARRAYS

The included core library contains such shader which
replicates the Unity3D Standard shader but with
tessellation and multi texture arrays. Most settings are
almost identically to the standard shader.

Texture Blending contains settings which define how to
blend between texture slices inside the assigned texture
arrays. A blend map can be assigned in order to add some
variation to the blending. Blend Scale and Blend Shift
describes the influence of the Blend Map.

Initial slice defines the initial blending state.

UV3 Power describes how the UV coordinate influences
the blending state. Since possible values are between 0 and
255, this value is usually very low (1 / 256).

The Tessellation settings are used to further enhance the
voxel representation even on low resolution voxel maps.
The first parameter is the tessellation strength where
higher values subdivide the mesh the most.

Min/Max Distance: Parts of the mesh which are further
away from the camera are not subdivided in order to save
GPU power. Parts below the minimum distance are subdivided the most.

CREATING TEXTURE ARRAYS:

Unfortunately, Unity3D does not provide a user
friendly way to create texture arrays. Therefore when
clicking the “Open Texture Array Creator”, a custom
editor window will popup which allows you to create
Texture Arrays.

This tool can extract the textures used in selected
materials which use the standard shader and bakes
those textures into texture arrays. If the material does
not use the standard shader, Null textures are used
instead. The perfect materials are Substance materials.

Color arrays will also be multiplied into baked textures
since every material could have different Metallic,
Emission and Main Colors.

However it is also possible to assign materials
manually by simply filling the arrays.

Then you can select the output path and name. If the
output path is not valid, the root asset folder is used
instead. You can assign a target material which
supports texture arrays and the created texture arrays
are assigned automatically for you.

USING NORMAL TEXTURES:

Texture Arrays have the disadvantage that they are not compressed and it is not easy to swap
out individual slice. This shader can be found under:

 Fraktalia/Core/MultiTexture/Texture2D_UVBlend_Triplanar.

In the end you simply assign the individual textures for
each layer. Functionality wise it is identical to texture
arrays except that it is fixed to 4 layers which is a limit
caused by the Sampler States. More layers may be
possible in the future when GPUs improve

You can also apply a “Standard” material by filling in the
slot. Then a button appears which automatically assigns
the textures of the Standard material so you don’t have
to fill in each texture manually.

Important Note:

Not all Mobile Devices and support SamplerStates.
WebGL is not supporting this at the time this was
written.

Your target hardware must support Direct3D 11/12 or
Metal according to the official documentation:

https://docs.unity3d.com/Manual/SL-
SamplerStates.html

https://docs.unity3d.com/Manual/SL-SamplerStates.html
https://docs.unity3d.com/Manual/SL-SamplerStates.html

NEW CALCULATOR

Marching Cubes has now a new option to use an
improved calculator which derives the vertex normal
from the voxel map.

The vertex normal from the standard normal
calculation has artifacts between cells when the
smooth angle is greater than 0 (Top Image). Also the
calculation of smoothed angles is very expensive when
the mesh itself is used to calculate those normal.

Flat shading (Middle Image) does not have these
artifacts as they are calculated from each face and is
cheap to compute. However it only makes sense in low
poly environments.

The bottom image shows the result of the new normal
calculator which is seamless and perfectly smooth. The
only drawback is the imperfect Cube-Based UV
coordinates. Therefore using a triplanar shader is
highly recommended.

TEXTURE ATLAS SUPPORT

While the first multi texture support creates natural
locking results since it allows seamless blending between
multiple textures, this method uses a conventional
texture atlas which cannot create seamless transitions.
Since this method only modifies the UV1 coordinate for
the texture atlas, this method does not require special
texture array shader.

The disadvantage is that smooth blending between
textures is impossible. This gives the result an artificial
and tech-like result. The parameters are almost
identically to the normal marching cubes hull generator.

Atlas Row defines the subdivision of the atlas texture.
For example if the atlas contains 4 textures, the row
count is 2.

Atlas Modulo is used to define vertex skips and alters
the final appearance. Nice values are 0, 3 and 6.

The last parameter is the texture dimension which
defines the voxel dimension for the texture evaluation.

GPU BASED MARCHING CUBES

 All components of the Voxel Generator are using the CPU for
calculations while the GPU is only used for the traditional
rendering. Modern GPUs are very powerful and their
computation power can be used for hull generation. Therefore
this hull generator now combines CPU and GPU in order to
maximize computation speed.

The main disadvantage is that this hull generator only works on
hardware which supports Compute Shaders. Check page
provided by Unity3D if your hardware supports compute
shaders:

https://docs.unity3d.com/Manual/class-ComputeShader.html

The settings are identically than the normal CPU based
Marching Cubes but is Triplanar by default. The vertex normals
are directly calculated using the Voxel Map and allows perfect
Tessellation.

The No Triplanar Settings allow the extra calculations of
desired properties at the cost of extra computation time.
Especially the recalculation of normal based on the mesh
(method used by all other hull generators) is very expensive.

Also by default, no UV1 coordinates are used as it is highly
recommended to use the now included triplanar shader but it is
possible to generate the Cube-Based UV coordinates like in CPU
based Marching Cubes.

The last properties are the compute shaders which can be
assigned but are loaded for you if they are not assigned.

UPDATE 1.9.5

The time where the GPU is faster than the CPU is over! The introduction of MarchingCubes CPU
V2 manifests the end of GPU based visualization systems as the CPU is now faster than the GPU
version by utilizing optimization techniques not possible on the GPU!

https://docs.unity3d.com/Manual/class-ComputeShader.html

CRYSTALLIC

This hull generator generates a crystalline structure
similar to the structure found in the Crystal Generator
asset. This generator also has the resolution settings
which are also found in marching cubes hull generator.
The only difference between crystal and marching cubes
are the crystal shape settings:

Crystal Mesh: Defined crystal shape. Low poly shapes
recommended.

Voxel Material: Material applied.

Offset Min/Max: Positional offset.

Scale Min/Max: Random scaling of each crystal

Scale Factor Min/Max: Multiplier.

Rotation Min/Max: Random rotation of each crystal

Probability: Probability of crystals being generated for
each voxel creating a surface.

Seed: Seed used for randomness.

Min/Max ID: Similar to marching cubes and used to
determine surface regions.

MULTI COLOR CRYSTAL (ADVANCED)

This variation implements multi colored crystals and has
the same properties as the crystal hull generator. It has
extra channels which modify UV3-UV6. This shader also
requires a special shader which uses those extra UV
coordinates. The core library includes a standard surface
shader which uses UV3-UV6 as color values.

This hull generator can also be used to create crystals with
different materials using texture arrays such as the
marching cubes variations. In the end, the assigned material
decides the purpose of the extra UV coordinates.

ATLAS CUBES

Atlas cubes is the typical hull found in Minecraft where ID
has its own UV coordinate assigned. This allows the
visualization of 255 different blocks. The original sprite
sheet is a 2048x2048 texture which is subdivided into
16x16 cells. The current method in Minecraft uses strings
which are not supported by the Unity Job system yet.

This hull generator also has the resolution settings found
in the previous hull generators. The only new setting is the
Atlas Rows which defines the cell subdivision of the sprite
sheet.

The cheap sprite atlas provided in the sample has 2 rows
and 2 columns. Therefore the Atlas Rows is set to 2.

Voxel Material and Smooth Angle are identical to the
previous hull generators.

DATA VISUALIZER

This hull generator works completely different than the
previous hull generators. Instead of covering a fixed region
of voxels, this hull generator directly converts the voxel
map into a visual representation. Voxel ID greater than 0 is
visualized as solid block. Also this generator has no
resolution setting and the main settings related to the
appearance only.

Mesh Depth: Describes the complexity of each mesh piece.
Lower value means more GameObjects are required to
represent the voxel map. Higher value mean that less
GameObjects are required but the vertex count of each
mesh piece is higher. This setting also includes a safety
check especially when the subdivision power of the
VoxelGenerator is greater than 2.

Full Cubes: Walls which are obstructed by solid voxels are
usually not generated in order to reduce vertex count. If
true, this is suppressed and therefore only useful when the
scale multiplier is smaller than one.

Scale Multiplier: Reduces the scale of individual voxel
blocks. The result can be used to generate fancy effects.

NumCores: Update speed evened out on multi core CPU as seen in other hull generators.

VoxelMaterial: Applied Material

IMPORTANT NOTE:

This visualization method is deprecated and will be removed in Voxelica V2 because it is
slow and quite buggy!

UV WRITER

The UV Writer is a hull generator which manipulates the
additional UV coordinates of an assigned mesh shape. The
sample shows the default sphere, capsule and a exported
mesh which are modified using the UV Writer.

This hull generator makes only sense if the additional UV
channels 3-6 are utilized by the material. Therefore custom
shader who use those channels are mandatory (or you will
see no effect).

Mesh Source: The reference mesh which should be
modified. It is important to know that the result is a new
mesh which is generated during initialization. Therefore
the original mesh is never modified. Use the mesh exporter
from the VoxelGenerator if the result should be saved.

Mesh Position/Rotation/Scale: Defines how the mesh
should be positioned inside the volume boundary.

Best Fit: The mesh is positioned inside the volume
boundary so it fits perfectly while keeping aspect ratio.

VoxelMaterial: Applied Material

Property Channels: Define which voxel dimension should be written into which UV coordinate.
A value of -1 will write nothing into the affected UV coordinate.

Add Tesselation Colors: When true, barycentric coordinates are written into the vertex color
channels which are important when using wireframe materials or seamless tessellation features.

DETAIL

This hull generator is the most complex
generator and allows the placement of detail
objects into the interior of the voxel map. Any
GameObject can be assigned as Detail object
which will then be placed over as it is shown
in the right image. Silver cubes are generated
inside the solid volume. Gold Ore is only
generated on the ground surface, Copper on
any surface and Stalagmite Cylinders on the
ceiling. The placement behavior is defined by
a variable amount of requirements. Every
detail at a voxel position can only be generated once. Also for ores which should be dig out, it is
recommended to set LockAfterInit to true else ores may spawn while the player is digging where
some voxels meet the requirements which were not met before and place details. Sometimes you
actually want this feature for example the randomly placement of toxic gas on the surface when
the player removes material.

The Detail hull generator also has the resolution settings
as found in previous hull generators. The most important
parameter of the appearance setting is the Detail Prefabs
list where you assign any number of GameObjects which
have a special VoxelDetailObject script as component.

When a voxel meets the requirements and the probability
also matches, a random object from the Detail Prefabs list
is chosen and a instance is placed at the voxel coordinates.

The position, rotation and scale of placed detail objects
are further manipulated by:

 Offset_Min/Max

 Rotation_Min/Max

 Scale_min/max, Scalefactor

The probability parameter decides if a detail is placed
even when requirements are met. It is generally recommended to keep the probability low as
the amount of GameObjects could massively increase if the requirements are not strict enough.
The randomness is completely deterministic and is based on the seed parameter.

NOTE: THIS HULL GENERATOR IS NOT SUITABLE FOR INFINITE WORLD SYSTEMS

REQUIREMENTS

The requirements are used to evaluate if the environment of
a voxel has specific values and fit given specifications. The
Requirements list can contain any number of detail entries
where the InitialHealth is the main starting parameter.

When a voxel is evaluated, the InitialHealth is the starting
parameter. A voxel meets the requirements if the
InitialHealth is greater than 0. The right sample entry checks
the ID of a voxel which is 3 blocks away from the evaluating
voxel. If the ID of the neighbor is not 255 or in other words
completely solid, the health will drop to -100 invalidating
the evaluating voxel immediately. If position X, Y, Z is 0, the ID of the evaluating voxel is checked.
This sample has 4 more entries which also checks the neighbor for the 4 other directions and the
resulting effect is that details can only be placed when surrounded by solid geometry.

Detailed Parameter Information:

 X, Y, Z: Coordinate of neighbored voxel which should be checked. If zero, the voxel which
should be evaluated is checked.

 Target ID: The target ID which a neighbored voxel should be compared to.

 Comp Mode: Comparison mode. Possible options are Equal, Not Equal, Greater and
Smaller.

 Correct Modifier: Changes in health if this specific requirement is correct.

 Incorrect Modifier: Changes in health if incorrect.

The sample scene “Detail” shows what is possible. It is possible to place objects inside the solid
volume like in the left image where silver cubes are placed but it is also possible to place objects
on the surface only like in the right image. In the right image, gold ores will only spawn on
ground while stalagmites can only appear on the ceiling.

MODULAR UNIFORM VISUAL HULL

This hull generator introduces a module based visualization system. When using previous hull
generators, switching between algorithms like MarchingCubes and Cubic meant removing the
MarchingCubes script and attaching the Cubic script which is tedious. With this hull generator,
all you need to do is changing the Mesh Surface Algorithm.

You can switch between None, Marching Cubes CPU, Marching Cubes GPU, Block, Crystal,
Mesh(UV Painting).

The settings are similar to the previous hull generators.
Also this hull generator allows you to define which
dimension it should use for the surface calculation.

LOD Settings:

It fully supports LOD which is defined by the Generator.
If “No Distance Collision” is checked, collision hull will
not be calculated if the LOD from the Generator is
higher than the Far Distance.

Target LOD defines when the resolution should be
lowered. If the current LOD from the Generator is
higher than the Target LOD, the width is cut in half.

Appearance Settings:

Here is everything related to the Material and
Geometry algorithm used.

Keep in mind that the multi material functionality is
now a post process module!

Post process settings:

Here are modules for further manipulating the resulting geometry.
Keep in mind that the multi material functionality is now a post process module!

Detail Settings:

This section is for assigning Surface_Detail_V2 which is for foliage and props placement.

SURFACE ALGORITHMS

Surface algorithms calculate the surface geometry and every
MUVH hull generator has one assigned. It is located in the
Appearance Setting.

There you can select the surface algorithm from a dropdown
menu. Most common surface algorithm used is either
Marching Cubes or Cubic.

Keep in mind that not all surface algorithms produce UV
coordinates! UV coordinates are now created using post processes.

MARCHING CUBES

This is the default setting and has a CPU version and
a GPU version.

It is recommended to use the CPU version as it is
faster now unless your GPU is so much more
powerful than the CPU.

Overall the GPU should stay with rendering as
countless optimization sessions have shown that the
GPU is quite terrible with voxel unless the whole data
permanently resides on the GPU.

Does not create UV Coordinates!

BLOCK

This is your standard “Minecraft” like rendering
where each voxel is displayed.

As usual, 0 means completely empty and all other
values are considered solid. But by default the
surface point is 128.

Additionally it automatically fills the UV coordinates
according to the Voxel ID so a texture atlas can be
used.

Atlas Rows is by default 16 so it is compatible with a
16x16 texture atlas.

CRYSTAL

Crystal is one of the more unusual visualization modes
for Voxel and is pretty unique as it creates the surface
using crystals.

This surface algorithm requires a crystal mesh which
is used as template in order to create a surface of
crystals.

Additionally you can define positioning settings to
introduce randomness. The seed is used for creating
the permutation table since randomness must be pre-
created during initialization.

MESH

This surface algorithm allows you to paint the surface of an
existing mesh.

In order for this to work properly, Cell Subdivision and
Num Cores must be set to 1 as it has no “cells”.

After you assigned the Mesh Source, the mesh will be used
in order to define the surface.

The mesh will be positioned, rotated and scaled according
to the settings. If best fit is checked, it will be placed into
the volume ideally without distorting the mesh.

The main usage for this is if you have created the geometry
using other methods outside Voxelica and you just want to
manipulate the mesh according to the voxel data.

POST PROCESS MODULES

The post process modules contain all the small features scattered around all hull generators.
This also includes surface modifiers which could simply become a module instead.

These modules manipulate everything else which can be done after the expensive surface
calculations! For example manipulating UV3 coordinates for multi texturing can be done
independently of the surface algorithm.

This means if you modify Dimension 1, only the post process modules have to be recalculated as
the solid surface itself remains the same. Since the surface calculation can be skipped entirely,
manipulating everything else except the Dimension used for density is magnitudes faster.

See technical details section for more information.

MULTI TEXTURE

This post process module writes into the UV3,
UV4, UV5 and UV6 coordinates.

Since X and Y coordinates are written separately,
you can store up to 8 voxel dimensions into a
mesh.

Shaders then can use the information in those UV
coordinates in order to manipulate the rendering.

The most common one is texture lookup where
the UV3 X coordinate is used as index lookup.
Combined with a smooth blending gives you the
resulting material seen in the samples.

Another example is using 4 Dimensions where
one is used for each texture like in the right
image. The shader itself has 4 textures and the
UV3-4 values define the stength of each texture.

Your shader could use the full range UV3-UV8 but
not every target platform supports a higher UV
range on a mesh.

Note: UV0 is used for texturing in Unity. UV1
and UV2 are also reserved by Unity.

MULTI TEXTURE V2

Since the Multi Texture V1 only allowed the usage of 4
textures.

With the addition of a new shader, it is now possible to
utilize 8 texture dimensions and 4 additional color
dimensions.

You can find this shader in the shader menu under
Fraktalia/Core/MultiTexture_V2/Texture2D_UVBlend_8Layers_4Color

So in order to utilize 12 layers, the Voxel Generator should
have a dimension count of 13 as the first one is for density.

The arrangement of the post process module ideally is like in
the right image.

You can see the sample material in the right image and it
scratches the maximum amount of textures a shader can have
which is the reason why this shader has 8layers and 4 colors
instead of 12 layers.

So 8 layers is the maximum possible without having to use
texture arrays.

In future updates, this post process modifier will support up
to 32 layers.

INFLATE

This post process module inflates or deflates the mesh.

There are some usages where you need this and this is
mostly related to navigation meshes and other weird
processes.

Not suitable for visualization as it obviously looks ugly.

CUBE UV

By default, the hull generator expects you to use
triplanar mapping where no UV coordinates are
required.

If your shader needs UV coordinates as it does not
use triplanar mapping, apply this post process
otherwise you won’t see any texturing

Using non-triplanar mapping may not be as
“perfect” as triplanar mapping but it is much
cheaper to render, making it suitable for weaker
GPUs

NORMALS

By default, the normal are derived by the surface
algorithm.

However under some circumstances you want flat
normal and usually is desired a low-poly art style.

It can also recalculate tangents

CALCULATE TANGENTS

This post process simply recalculates the tangents. Sometimes this is required if the normal
mapping is wrong.

VERTEX COLORS

Besides UV3-UV6, every mesh has a vertex color
which can be used for rendering if UV3-6 is not
enough. This gives you additional 4 dimensions you
could write into the mesh.

Additionally, this post process can write barycentric
coordinates into the vertex colors

Barycentric coordinates are required for wireframe
shaders and seamless tesseleation. The upper right
image shows the result if such coordinates are
written into the vertex colors.

Second right image show the normal usage when
dimensions are written into the vertex coordinates.

There are shaders included which display the vertex
colors as the standard shader does not do that.

ATLAS UV

This post process module does what the Block surface
algorithm does. It writes the voxel value into the UV
coordinate for usage with an texture atlas.

The main parameters are Atlas Rows and Atlas Modulo.

If the Surface Algorithm is Marching Cubes, an Atlas
Modulo of 3 yields the best results.

If you use block, the built in UV generation of block is
better.

If you use crystal, the ideal setting depends on the
crystal mesh used.

DETAIL GENERATORS

The last functionality is the application to place foliage
and props onto the surface. Once added, a new separate
object is created which has “Surface_Detail_V2” script
attached.

See surface detail below as the only difference is the
massively increased performance!

Once you have added the Surface_Detail_V2 object,
cleanup the engine and reinitialize it in order to have it
applied.

SURFACE MODIFIER

Surface modifiers alter the surface generated by a hull
generator. Currently only Marching Cubes multi texture
supports surface modifiers.

They inherit from Basic Surface Modifier and are applied
after the hull generator finished hull generation. A hull
generator supporting surface details has a Detail Generator
list which can be filled with multiple detail generators.

SURFACE DETAIL V1, V2

Surface Detail is a modifier which places detail objects to the
surface. Mostly Details should have no collision especially if
the detail is foliage like the sample grass. The surface detail
generator has 2 modes which is Crystallic and object mode.

Crystallic is recommended for details with low vertex count
such as grass sprites or small pebbles. It uses the Crystal
Mesh parameter as shape and is a simple quad and a crystal
material.

The crystal placement provides position, rotation and scale
settings for variation.

Object placement is recommended for complex objects such
as trees and props with more vertices. It places instances of
the Detail Object and uses the Object placement for variation.

Crystal and Object have both a Probability. Crystals are also
multiplied by the Density as more crystals are possible as the
performance impact is lower than with highly detailed
objects such as trees.

The Seed is used as initial parameter for randomness in
order to keep the result deterministic (else the props would
jump around rapidly)

The last settings are the requirements to define when a detail
should be placed. You can define which dimension to read
and the ID the voxel at the surface should have to be suitable for placement. The sample restricts
the placement of grass to a region which contains grass. (127-129)

The falloff defines how sharp the probability is reduced when the surface is outside the desired
ID range. Also the right sample uses Both as mode which places crystals (grass) and objects
(trees).

V2 Is identically but is significant faster!

MOBILE SUPPORT:

VoxelGenerators can be used on any mobile device. However it is recommended to use lower
resolution voxel maps and less detailed visual hull constructions since mobile devices are not as
powerful as modern gaming computers. The recommended mesh resolution for marching cubes
is a width of 4 and cell subdivision of 4. The main limitation is GPU based because the
VoxelGenerator is optimized for multi core CPU usage since the GPU already is busy rendering
the geometry.

VR/HIGH END SUPPORT:

VoxelGenerators can be used in VR applications.
Actually the development of this asset was part of
the application for my master thesis which was
about sculpting in VR. There it was possible to
sculpt the voxel block using nasty power tools
like chainsaws and concrete cutters. Back then
the voxel engine was much less optimized than it
is now.

Creating a sculpting tool for VR is done by simply
adding a collider to the handle with a voxel
modifier and call ModifyAtPos using the collision point(world position) as input parameter.

For high end stuff, a resolution where the width is 16 and sell subdivision is 16 already is fine
enough where individual voxels start to blur and become not visible anymore. Going smaller like
width of 32 and cell subdivision of 32 is so fine that it enters the realm of scientific visualization
where no one cares if it works in real time or not (and where money doesn’t matter).

ASSET EXTENSIONS

This section contains information about extensions included in other asset packages. An asset
extension combines the Voxel Generator with a different unity asset. The simplest example
would be marching cubes using a gemstone material from the Advanced Gem Shader package
(costs 15$ or two unhealthy McDonalds meal). Expansion assets are .UnityPackage files which
are located in the extension folder of the other asset. The extension content will not work
properly if the Voxel Generator is not included in the Project. For example if you import the
extension from the Advanced Gem Shader asset, the sample prefabs simply have “Missing
Scripts” as the VoxelGenerator doesn’t exist.

ADVANCED GEM SHADER

The Advanced Gem Shader package contains a large
library of shader to implement gemstones and especially
gemstones with unusual properties like inclusions and
volumetric interior effects. This allows the creation of
sculpable blocks with volumetric interior effects. The
extension contains a sample scene containg
VoxelGenerator game objects using Gemstone material.
Such object has a marching cubes to generate the surface
and a UV Writer hull generator for the volumetric interior which is visualized using gemstone
complex shader provided by the Advanced Gem Shader package.

FREQUENTLY ASKED QUESTIONS:

Q: Why does a VoxelGenerator has boundaries?

The underlying data structure occupies a defined volume (root size) which is fixed in order to
maintain consistency. The LimitBreaker provides the option to make the VoxelGenerator
limitless.

Q: Does this asset work on lower Unity versions?

The minimum required version to officially get this asset is 2019.2.11f1. It compatibility may
work below 2019 until it hits the hard bottom of 2018.1. Below the asset will not work because
the burst compilation does not exist below 2018.1

Q: What are the best settings?

The data structure itself does not care which resolution is used. But for mobile, use Width of 4
and Cell subdivision of 4 or lower. Target depth lower than 5.

Higher width means more vertices per GameObject which increases GPU efficiency but increases
CPU load. Higher subdivision count but lower width means more GPU load but less CPU demand.

Increasing the Subdivision Power of the data structure reduce lookup time but at the cost of
more memory.

Q: Is it possible to implement physical interaction such as floating voxels falling down?

Physical behavior in voxel engines is a very complex part and requires ton of work.
Implementing this would actually double the price for this asset. Getting this implemented
would require at least one more year.

Q: I need accurate voxel geometry for scientific visualization?

If you need the engine for medical or scientific stuff, it is always recommended to use Texture to
voxel converter as it is the most accurate solution. Mesh to voxel converter is not accurate
enough in my opinion.

Q: How do I increase the resolution?

The resolution is dynamically and the data itself can get as fine as desired by increasing the
depth value of the modifier.

When increasing the depth, you also have to increase the precision of the hull generator by
increasing the Width and Cell Subdivision. Finer details will be missed if the hull generator is too
coarse.

For example Marching Cubes:

Generator: Subdivision Power = 2
Modifier: Depth = 7
Hull Generator: Width = 8, Cell Subdivision = 8

Generator: Subdivision Power = 2
Modifier: Depth = 8
Hull Generator: Width = 16, Cell Subdivision = 8

Generator: Subdivision Power = 2
Modifier: Depth = 9
Hull Generator: Width = 16, Cell Subdivision = 16

High Resolution:

Generator: Subdivision Power = 2
Modifier: Depth = 10
Hull Generator: Width = 32, Cell Subdivision = 16

Whenever the depth increases, you also have to double either width or cell subdivision!

If the hull generator is too fine, the result is a blocky appearance.

AUTHOR NOTES:

This voxel engine uses no external stuff which is the connected with Unity3D and therefore has
no “Bridges” or other APIs as it is common in other voxel engines. Also this voxel engine was
developed with full control over the engine itself in mind so every functionality can be modified.
The performance is only possible through the inclusion of the Unity Job system and Burst
compilation system. Therefore it is highly recommended to have those installed.

I am glad that I was allowed to work with voxels as part of my master thesis. For all those who
have to write one, always choose a topic you are really interested in.

LAST NOTES:

If you have any questions, suggestions, bug reporting don’t hesitate to contact me. If you are
going to sell a game which uses this asset, inform me because I may buy your game and play it

Contact Information:

E-Mail: m.hartl@fraktalia.org

Homepage: http://fraktalia.org/

mailto:m.hartl@fraktalia.org
http://fraktalia.org/

